2015, Número 1
Aplicabilidad de la simulación computacional en la biomecánica del disco óptico
Calderín PB,González CAR, Landín SM, Nápoles PE
Idioma: Español
Referencias bibliográficas: 28
Paginas:
Archivo PDF: 971.36 Kb.
RESUMEN
Fundamento: la presión intraocular provoca tensiones y deformaciones en los tejidos del disco óptico que pueden ocasionar daño glaucomatoso.
Objetivo: simular el comportamiento biomecánico del disco óptico y describir su aplicabilidad en la predicción del daño glaucomatoso.
Métodos: la herramienta de simulación computacional usada es el Método de Elementos Finitos. Se utilizó una presión intraocular de 15 mm Hg, así como las
propiedades mecánicas y la geometría de los tejidos de la papila óptica reportados en la literatura.
Desarrollo: las mayores concentraciones de tensiones aparecen a nivel de la
esclerótica peripapilar y fueron congruentes con las estimaciones reportadas en la
literatura. La rigidez escleral influyó sobre las tensiones transmitidas a la lámina
cribosa. Este tejido resultó ser el más susceptible al daño glaucomatoso dentro de la
papila óptica.
Conclusiones: el análisis preliminar obtenido constituye un punto de partida para el
estudio del nervio óptico a través de la simulación computacional. Se demuestra que la
presión intraocular, la complejidad de la geometría y las propiedades mecánicas de los
tejidos de la cabeza del nervio óptico son factores condicionantes del daño
glaucomatoso.
REFERENCIAS (EN ESTE ARTÍCULO)
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012 Dic;96(5):25-35.
Panda Jonas S, Xu L, Yang H, Wang YX, Jonas SB, Jonas JB. Optic nerve head morphology in young patients after antiglaucomatous filtering surgery. Acta Ophthalmol. 2014 Feb;92(1):46-78.
Eguía Martínez F, Rió Torres M, Capote Cabrera A. Manual de Diagnóstico y Tratamiento en Oftalmología. La Habana: ECIMED; 2009.
Balasubramanian M, Bowd C, Weinreb RN, Zangwill LM. Agreement between the Heidelberg Retina Tomograph (HRT) stereometric parameters estimated using HRT-I and HRT-II. Optom Vis Sci. 2011 Ene; 88(1):140-9.
Sigal IA, Grimm JL, Schuman JS, Kagemann L, Ishikawa H, Wollstein G. A Method to Estimate Biomechanics and Mechanical Properties of Optic Nerve Head Tissues From Parameters Measurable Using Optical Coherence Tomography. IEEE Transactions on Medical Imaging. 2014 Jun;33(6):1381-9.
Burgoyne CF, Downs JC, Bellezza AJ, Suh FJK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005 Ene;24(1):39-73.
Bellezza AJ, Hart RT, Burgoyne CF. The Optic Nerve Head as a Biomechanical Structure: Initial Finite Element Modeling. Invest Ophthalmol Vis Sci. 2000 Sep;41(10):2991-3000.
Gaddie B, Bloomenstein M, Thimons J, Wooldridge R. Using Biomechanics to Advance Glaucoma Care. Optometric Management. 2013 Feb:3-11.
Sigal IA, Grimm JL. A Few Good Responses: Which Mechanical Effects of IOP on the ONH to Study? Invest Ophthalmol Vis Sci. 2012 Abr;53(7):4270-8.
González Carbonell RA, Nápoles Padrón E, Claderín Pérez B, Hidalgo Cisneros YA, Landín Sorí M. Interdisciplinariedad entre Ingeniería y Medicina en problemas de salud. Rev Hum Med. 2014. De proxima aparición.
Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011 Jul;93(1):4-12.
Eilaghi A, Flanagan JG, Simmons CA, Ethier CR. Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng. 2010 Abr;38(4):1586- 92.
Landín Sorí M, Rodríguez Bencomo DdJ. Una aproximación a la historia de la Oftalmología en Camagüey. Rev Hum Med. May-Ago 2014;14(2):271-84.
González Carbonell R, Alvarez García E, Moya Rodríguez J. Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. En: Folgueras Méndez J, Aznielle Rodríguez TY, Calderón Marín CF, Llanusa Ruiz SB, Castro Medina J, Vega Vázquez H, et al, editores. V Latin American Congress on Biomedical Engineering CLAIB 2011. IFMBE Proceedings. 33. Berlin Heidelberg: Springer; 2013. p. 912-5.
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. 3D morphometry of the human optic nerve head. Exp Eye Res. 2010 Ene;90(1):70-80.
Grytz R, Fazio MA, Girard MJA, Libertiaux V, Bruno L, Gardiner S, et al. Material properties of the posterior human sclera. J Mech Behav Biomed. 2014 Ene;29:602-17.
Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite Element Modeling of Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci. 2004 Ago;45(12):4378-87.
Sigal IA, Flanagan JG, Ethier CR. Factors Influencing Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99.
Qiu J, Qian X, Quan H, Wangjun O, Liu Z. The in vivo 3D Optic nerve head modeling based on human multimodality images. En: Long M, editor. World Congress on Medical Physics and Biomedical Engineering 2012. IFMBE Proceedings. 39. Berlin Heidelberg: Springer; 2013. p. 264-6.
Sigal IA. Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol Vis Sci. 2009 Abr;50(6):2785-95.
Sigal I, Flanagan J, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechan. 2009 Abr;8(2):99-109.
Quigley H, Cone F. Development of diagnostic and treatment strategies for glaucoma through understanding and modifiction of scleral and lamina cribrosa connective tissue. Cell Tissue Res. 2013 Ago;353(2):231-44.
Girard MJA, Downs JC, Burgoyne CF, Suh JKF. Peripapillary and Posterior Scleral Mechanics Part I: Development of an Anisotropic Hyperelastic Constitutive Model. J Biomech Eng. 2009 May;131(5):051011 1-9.
Sigal IA, Bilonick RA, Kagemann L, Wollstein G, Ishikawa H, Schuman JS, et al. The optic nerve head as a robust biomechanical system. Invest Ophthalmol Vis Sci. 2012 May;53(6):2658-67.
Sigal IA, Flanagan JG, Lathrop KL, Tertinegg I, Bilonick R. Human lamina cribrosa insertion and age. Invest Ophthalmol Vis Sci. 2012 Ago;53(11):6870-9.
Bilonick R. Human lamina cribrosa insertion and age. Invest Ophthalmol Vis Sci. 2012 Ago;53(11):6870-9.
CTO G. Manual CTO de Medicina y Cirugía. 8va ed. CTO Medicina; 2011.
Mwanza J-C, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of Peripapillary Retinal Nerve Fiber Layer Thickness and Optic Nerve Head Parameters Measured with Cirrus HD-OCT in Glaucomatous Eyes. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5724-30.