2014, Número 1
<< Anterior Siguiente >>
Rev Mex Ortop Ped 2014; 16 (1)
Sustitutos óseos en ortopedia. Las sales de calcio y la matriz ósea desmineralizada
Álvarez MR
Idioma: Español
Referencias bibliográficas: 103
Paginas: 11-19
Archivo PDF: 161.74 Kb.
RESUMEN
Desde el punto de vista de los biomateriales; el hueso es una estructura compuesta, anisotrópica, porosa, que contiene células óseas y vasos sanguíneos embebidos en una matriz bifásica, formado por una combinación de mineral óseo, osteoide y células, que le dan al hueso su dureza, tenacidad y capacidad de regeneración. En cambio los biomateriales son todos aquellos insumos médicos obtenidos de manera sintética o natural (tejidos cadavéricos), destinados a ser utilizados para interconectarse con los sistemas biológicos, con el fin de reparar, aumentar o reemplazar al hueso humano, cumpliendo con ciertas características como son la biocompatibilidad, bioactividad, biomimetismo, biosensibilidad, bioabsorción, biodegradación, además de su osteoinducción, osteoconducción y osteointegración. Así en esta revisión se nombrarán las aplicaciones terapéuticas en Ortopedia de dos grandes grupos de biomateriales, tanto las sales de calcio (fosfatos, sulfatos e hidroxiapatita) como la matriz ósea desmineralizada a partir de sus principios biológicos relacionados.
REFERENCIAS (EN ESTE ARTÍCULO)
Service RF. Tissue engineers build new bone. Science. 2000; 289: 1498-1500.
Peppas NA, Langer R. New challenges in biomaterials. Science. 1994; 263: 1715-1720.
Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005; 36: 1392-1404.
Katz JL. Anisotropy of Young’s modulus of bone. Nature. 1980; 283: 106-107.
Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996; 329: 300-309.
Navarro M, Michiardi A, Castaño O et al. Review. Biomaterials in orthopedics. J R Soc Interface. 2008; 5: 1137-1158.
Behera AP, Mishra SC. Classification of biomaterials used in medicine. Int J Adv Applied Sci. 2012; 1(3): 31-35.
Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002; 84(3): 454-464.
Narayan R. Chapter 1. Overview of biomaterials and their use in medical devices. In: ASM Handbook, Volume 23: Materials for medical devices. Ohio, USA: ASM International, Materials Park; 2012.
Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001; 31: 81-110.
Nandi SK, Roy S, Mukherjee P et al. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010; 132: 15-30.
Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg [Br]. 2007; 89-B: 574-579.
Golish SR, Mihalko WM. Principles of biomechanics and biomaterials in orthopaedic surgery. American Academy of Orthopaedic Surgeons AAOS. Instructional Course Lecture. J Bone Joint Surg (Am). 2011; 93-A(2): 207-212.
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001; (10): S96-S101.
Blom A. Mini-symposium: frcture healing. (v) wich scaffold for wich application? Curr Orthop. 2007; 21: 280-287.
Oh S, Oh N, Appleford M, Ong JL. Bioceramics for tissue engineering applications. A review. Am J Biochem Biotech. 2006; 2(2): 49-56.
Posner AS. Crystal chemistry of bone mineral. Physiol Rev. 1969; 40: 760-792.
Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res. 1975; 8: 273-281.
Jagdale PN, Bamane SR. Calcium hydroxyapatite bioceramics and evaluation of their in vitro biocompatibility. Res J Pharm Biol Chem Sci. 2011; 2(1): 180-186.
Holmes DE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in metaphyseal defects. J Bone Jnt Surg. 1986; 68: 904-911.
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013; (9): 7591-7621.
Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mat. 2002; 38(10): 973-984.
Jarcho M. Retrospective analysis of hydroxyapatite development for oral implant applications. Dental Clinics North Am. 1992; 36(1): 19-26.
Knubovets R. Structural mineralogy and properties of natural phosphates. Rev Chem Engineering. 1993; 9(3-4): 161-216.
Müller L, Conforto E, Caillard D, Müller FA. Biomimetic apatite coatings-carbonate substitution and prefered growth orientation. Biomat Eng. 2007; 24: 462-466.
Dorozhkin SV. Self-setting calcium orthophosphate formulations: cements, concretes, pastes and puties. Int J Mat Chem. 2011; 1(1): 1-48.
Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000; 21: 2405-2412.
Barinov SM, Komlev VS. Calcium phosphate bone cements. Inorg Mat. 2011; 47(13): 1470-1485.
Yoshikawa H, Tamai N, Murase T, Myoui A. Review. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009; 6: S341-S348.
Sanosh KP, Chu M, Balakrishnan A et al. Preparation and characterization of nano-hydroxyapatite poder using sol-gel technique. Bull Mater Sci. 2009; 32(5): 465-470.
Urist MR. Bone formation by autoinduction. Science. 1965; 150(3698): 893-899.
Cheng H, Jiang W, Phillips FM et al. Osteogenic acitivity of the fourteen types of human bone morphogenetic proteins (BMP’s). J Bone Joint Surg Am. 2003; 85: 1544-1552.
Muschler GF, Sengezer M, Celikoz B et al. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997; 79: 313-318.
Peterson B, Whang PG, Iglesias R et al. Osteoinductivity of commercially availale bone matrix. J Bone Joint Surg Am. 2004; 86: 2243-2250.
Kanakaris NK, Giannoudis PV. Clinical application of bone morphogenic proteins: current evidence. J Surg Orthop Adv. 2008; 17: 133-146.
Bostrom MP, Seigerman DA. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. Hosp Spec Surg J. 2005; (1): 9-18.
Gruskin E, Doll BA, Futrell FW et al. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012; 64(12): 1063-1077.
Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium-II. Mechanisms of osteoblast adhesión. Journal of Biomedical Materials Research. 2002; 59(2): 312-317.
Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004; 25(11): 2111-2121.
Bajammal SS, Zlowodzki M, Lelwica A et al. The use of calcium phosphate bone cement in fracture treatment: a meta-analysis of randomized trials. J Bone Joint Surg [Am]. 2008; 90-A: 1186-1196.
Cheung S, Westerheide K, Ziran B. Efficacy of contained metaphyseal and periarticular defects treated with two different demineralized bone matrix allografts. Int Orthop. 2003; 27(1): 56-59.
Dickson KF, Friedman J, Buchholz JG, Flandry FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma. 2002; 53: 1103-1108.
Larsson S, Bauer TW. Use of injectable calcium phospate cement for fracture fixation: a review. Clin Orhtop Relat Res. 2002; (395): 23-32.
Wilkins RM, Kelly CM. The effect of allomatrix injectable putty on the outcome of long bone applications. Orthopedics. 2003; 26(Suppl): 567-570.
Ziran BH, Smith WR, Morgan SJ. Use of calcium-based demineralized bone matrix/allograft for nonunions and posttraumatic reconstruction of the apendicular skeleton: preliminary results and complications. J Trauma. 2007; 63: 1324-1328.
Cassidy C, Jupiter JB, Cohen M et al. Norian SRS cement compared with conventional fixation in distal radial fractures: a randomized study. J Bone Joint Surg [Am]. 2003; 85-A: 2127-2137.
Handoll HH, Watts AC. Bone grafts and bone substitutes for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2008; 2: CD006836.
Jeyam M, Andrew JG, Muir LT, McGovern A. Controlled trial of distal radial fractures treated with a resorbable bone mineral substitute. J Hand Surg Br. 2002; 27: 146-149.
Kopylov P, Adalberth K, Jonsson K, Aspenberg P. Norian SRS versus functional treatment in redisplaced distal radial fractures: a randomized study in 20 patients. J Hand Surg Br. 2002; 27: 538-541.
Kopylov P, Runnqvist K, Jonsson K, Aspenberg P. Norian SRS versus external fixation in redisplaced distal radial fractures: a randomized study in 40 patients. Acta Orthop Scand. 1999; 70: 1-5.
Ladd AL, Pliam NB. The use of bone grafts subsitutes in distal radius fractures. J Am Acad Orthop Surg. 1999; 7: 279-290.
Sanchez-Sotelo J, Munuera L, Madero R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg [Br]. 2000; 82-B: 856-863.
Suhm N, Gisep A. Injectable bone cement augmentation for treatment of distal radius fractures: a review. J Orthop Trauma. 2008; 22(8 Suppl): S121-S125.
Tyllianakis ME, Panagopoulos A, Giannikas D, Megas P, Lambiris E. Graft supplemented, augmented external fixation in the treatment of intra-articular distal radial fractures. Orthopedics. 2006; 29: 139-144.
Zimmermann R, Gabl M, Lutz M et al. Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg. 2003; 123: 22-27.
Mattsson P, Alberts A, Dahlberg G et al. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures: a prospective, randomised multicentre study. J Bone Joint Surg [Br]. 2005; 87-B: 1203-1209.
Mattsson P, Larsson S. Stability of internally fixed femoral neck fractures augmented with resorbable cement: a prospective randomized study using radiostereometry. Scand J Surg. 2003; 92: 215-219.
Mattsson P, Larsson S. Unstable trochanteric fractures augmented with calcium phosphate cement: a prospective randomized study using radiostereometry to measure fracture stability. Scand J Surg. 2004; 93: 223-228.
Mattsson P, Larsson S. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patients. Acta Orthop. 2006; 77: 251-256.
Blom AW, Wylde V, Livesey C et al. Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute. Acta Orthop. 2009; 80: 150-154.
De Ridder V, Kerver B, Poser B. Posterior wall acetabular fractures: augmentation of communited and impacted cancellous bone with Norian SRS, a carbonated apatite cement. Eur J Trauma. 2003; 29: 369-374.
Jubel A, Andermahr J, Mairhofer J et al. Use of the injectable bone cement Norian SRS for tibial plateau fractures: results of a prospective 30-month follow-up study. Orthopäde. 2004; 33(8): 919-927.
Lobenhoffer P, Gerich T, Witte F, Tscherne H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma. 2002; 16: 143-149.
Russell TA, Leighton RK. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures: a multicenter, prospective, randomized study. J Bone Joint Surg [Am]. 2008; 90-A: 2057-2061.
Simpson D, Keating JF. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury. 2004; 35: 913-918.
Engel T, Lill H, Korner J, Verheyden P, Josten C. Tibial plateau fracture: biodegradable bone cement-augmentation. Unfallchirurg. 2003; 106-2: 97-101.
Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion: preliminary results in 40 patients. Can J Surg. 2001; 44: 262-266.
Cammisa FP Jr, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine. 2004; 29: 660-666.
Chen CL, Liu CL, Sun SS et al. Posterolateral lumbar spinal fusion with autogenous bone chips from laminectomy extended with OsteoSet. J Chin Med Assoc. 2006; 69: 581-584.
Epstein NE. Beta tricalcium phosphate: observation of use in 100 posterolateral lumbar instrumented fusions. Spine J. 2009; 9: 630-638.
Girardi FP, Cammisa FP Jr. The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics. 2003; 26(Suppl): 545-548.
Le Huec JC, Lesprit E, Delavigne C, et al. Tri-calcium phosphate ceramics and allografts as bone substitues for spinal fusion in idiopathic scoliosis as bone substitutes for spinal fusion in idiopathic scoliosis: comparitive clinical results at four years. Acta Orthop Belg. 1997; 63: 202-211.
Lerner T, Bullmann V, Schulte TL, Schneider M, Liljenqvist U. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J. 2009; 18: 170-179.
Niu CC, Tsai TT, Fu TS et al. A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine. 2009; 34: 2715-2719.
Petruskevicius J, Nielsen S, Kaalund S, Knudsen PR, Overgaard S. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study. Acta Orthop Scand. 2002; 73: 575-578.
Ploumis A, Albert TJ, Brown Z, Mehbod AA, Transfeldt EE. Healos graft carrier with bone marrow aspirate instead of allograft as adjunct to local autograft for posterolateral fusion in degenerative lumbar scoliosis: a minimum 2-year follow-up study. J Neurosurg Spine. 2010; 13-2: 211-215.
Sassard WR, Eidman DK, Gray PM et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000; 23: 1059-1064.
Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics. 2007; 30: 567-570.
Bae H, Shen M, Maurer P, et al. Clinical experience using Cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: twenty four-month follow-up. Spine (Phila Pa 1976). 2010; 35: E1030-E1036.
Grafe IA, Baier M, Nöldge G et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine. 2008; 33: 1284-1290.
Hillmeier J, Meeder PJ, Nöldge G et al. Balloon kyphoplasty of vertebral compression fractures with a new calcium phosphate cement. Orthopäde. 2004; 33: 31-39.
Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007; 16: 601-610.
Middleton ET, Rajaraman CJ, O’Brien DP, Doherty SM, Taylor AD. The safety and efficacy of vertebroplasty using Cortoss cement in a newly established vertebroplasty service. Br J Neurosurg. 2008; 22: 252-256.
Choy WS, Kim KJ, Lee SK, Yang DS, Park HJ. Treatment for hand enchondroma with curettage and calcium sulfate pellet (OsteoSet®) grafting. Eur J Orthop Surg Traumatol. 2012; 22: 295-299.
Clayer M. Injectable form of calcium sulphate as treatment of aneurysmal bone cysts. ANZ J Surg. 2008; 78(5): 366-370.
Gitelis S, Virkus W, Anderson D, Piasecki P, Yao TK. Functional outcomes of bone graft substitutes for benign bone tumors. Orthopedics. 2004; 27(Suppl): 141-144.
Joeris A, Ondrus S, Planka L, Gal P, Slongo T. ChronOS inject in children with benign bone lesions: does it increase the healing rate? Eur J Pediatr Surg. 2010; 20: 24-28.
Kim JH, Oh JH, Han I et al. Grafting using injectable calcium sulfate in bone tumor surgery: comparison with demineralized bone matrix-based grafting. Clin Orthop Surg. 2011; 3: 191-201.
Mankin HJ, Gebhardt MC, Jennings LC et al. Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res. 1996; 324: 86-97.
Mirzayan R, Panossian V, Avedian R, Forrester DM, Menendez LR. The use of calcium sulfate in the treatment of benign bone lesions: a preliminary report. J Bone Joint Surg [Am]. 2001; 83-A: 355-358.
Peltier LF, Jones RH. Treatment of unicameral bone cysts by currettage and packing with plaster-o-paris pellets. J Bone Joint Surg (Am). 1978; 60-Am(6): 820-822.
Saika KC, Bhattacharya TE, Bhuyan SK et al. Calcium phosphate ceramics as bone graft substitutes in filling bone tumor defects. Indian J Orthop. 2008; 42(2): 169-172.
Shindler OS, Cannon SR, Briggs TWR, Blunn GW. Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours. J Orthop Surg. 2008; 16(1): 66-74.
Ultraporous beta-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg (Am). 2013; 95(2): 158-166.
Van Hoff C, Samora JB, Griesser MJ et al. Effectiveness of ultraporous beta-tricalcium phosphate (vitoss) as bone graft substitute for cavitary defects in benign and low-grade malignant bone tumors. Am J Orthop. 2012; 41: 20-23.
Yamamoto T, Onga T, Marui T, Mizuno K. Use of hydroxyapatite to fill cavities after excision of benign bone tumours. J Bone Joint Surg (Br). 2000; 82-B: 1117-1120.
Amemiya M, Kikkawa I, Watanabe H et al. The use of hydroxyapatite blocks for innominate osteotomy: a report of three cases. J Orthop Sur. 2008; 16(2): 237-240.
Aulakh TS, Jayasekera N, Kuiper JH, Richardson JB. Long-term clinical outcomes following the use of synthetic hydroxyapatite and bone graft in impaction in revision hip arthroplasty. Biomaterials. 2009; 30: 1732-1738.
Hamadouche M, Karoubi M, Dumaine V, Courpied JP. The use of fibre-based demineralised bone matrix in major acetabular reconstruction: surgical technique and preliminary results. Int Orthop. 2011; 35: 283-288.
McNamara I, Deshpande S, Porteous M. Impaction grafting of the acetabulum with a mixture of frozen, ground irradiated bone graft and porous synthetic bone substitute (Apapore 60). J Bone Joint Surg [Br]. 2010; 92-B: 617-623.
Kurien T, Pearson RG, Scammell BE. Instructional Review: Trauma. Bone graft substitutes currently available in orthopaedic practice. The evidence for their use. Bone Joint J. 2013; 95-B: 583-597.
Gross RH. The use of bone grafts and bone graft substitutes in pediatric orthopaedics: an overview. J Ped Orthop. 2012; 32: 100-105.
De Long WG Jr, Einhorn TA, Koval K et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg [Am]. 2007; 89-A: 649-658.