2014, Número 1
<< Anterior
Cir Cir 2014; 82 (1)
Micronutrientes y diabetes, el caso de los minerales
Granados-Silvestre MÁ, Ortiz-López MG, Montúfar-Robles I, Menjívar-Iraheta M
Idioma: Español
Referencias bibliográficas: 44
Paginas: 119-125
Archivo PDF: 343.04 Kb.
RESUMEN
Los minerales son nutrientes esenciales para el organismo, de naturaleza
inorgánica que les confiere, entre otras características, ser resistentes al
calor, participan en diversas reacciones químicas del metabolismo en
donde regulan el equilibrio hidroelectrolítico, el mantenimiento óseo,
en la trasmisión de los impulsos nerviosos, y durante el proceso de
coagulación sanguínea, particularmente por su función como cofactores
enzimáticos, tienen un papel clave en varios procesos fisiológicos. La
homeostasis de la glucosa involucra una fina coordinación de eventos
en donde el control hormonal por la insulina tiene un papel primordial.
Sin embargo, la función de los minerales, como el magnesio, el zinc, el
cromo, el hierro y el selenio en la diabetes es menos evidente y puede
ser, en algún caso, controversial. Esta revisión muestra el conocimiento
acerca de estos cinco elementos y su correlación con la diabetes.
REFERENCIAS (EN ESTE ARTÍCULO)
Saper RB, Rash R. Zinc: An Essential Micronutrient. Am Fam Physcian 2009;79:768-772.
Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 2009;1790:1478-1485.
Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 2010;43:1-21.
Liochev SI, Fridovich I. Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic Biol Med 2010;48:1565-1569.
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973;179:588-1590.
Zamocky M, Furtmüller P, Obinger C. Evolution of Catalases from Bacteria to Humans, Antioxid Redox Signal 2008;10:1527-1548.
Guerrero-Romero F, Rodríguez-Moran M. Complementary therapies for diabetes: the case for chromiun, magnesium and antioxidants. Arch Med Res 2005;36:250-257.
Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 1998;136:480-490.
Craft NE, Failla ML. Zinc, Iron, and Copper absorption in the streptozotocin-diabetic rat. Am J Physiol 1983;244:122- 128.
Rodríguez-Morán M, Guerrero-Romero E. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomised doubleblind controlled trial. Diabetes Care 2003;26:1147-1152.
Swaminathan R. Magnesium Metabolism and its Disorders. Clin Biochem Rev 2003;24:47-66.
Takaya J, Higashino H, Kobayashi Y. Intracellular magnesium and insulin resistance. Magnes Res 2004;17:126-136.
Resnick LM, Altura BT, Gupta RK, Laragh JH, Alderman MH. Intracellular and extracellular magnesium depletion in type 2 (non-insulin-dependent) diabetes mellitus Diabetologia 1993;36:767-770.
Ewis SA, Abdel-Rahman MS. Effect of metformin on glutathione and magnesium in normal and streptozotocininduced diabetic rats. J Appl Toxicol 1995;15:387-390.
Nadler J, Scott S. Evidence that pioglitazone increases intracellular free magnesium concentration in freshly isolated rat adipocytes. Biochem Biophys Res 1994;201:416-21.
Guerrero-Romero F, Rodriguez-Moran M. Pioglitazone increases serum magnesium levels in glucose-intolerant subjects. A randomized, controlled trial. Exp Clin Endocrinol Diabetes 2003;111:91-96.
Grafton G, Bunce CM, Sheppard MC, Brown G, Baxter MA. Effect of Mg2+ on Na(+)-dependent inositol transport. Role for Mg2+ in etiology of diabetic complications. Diabetes 1992;41:35-39.
Wälti MK, Zimmermann MB, Walczyk T, Spinas GA, Hurrell RF. Measurement of magnesium absorption and retention in type 2 diabetic patients with the use of stable isotopes Am J Clin Nutr 2003;78:448-453.
McNall AD, Etherton TD, Fosmire GJ. The impaired growth induced by zinc deficiency in rats is associated with decreased expression of the hepatic insulin-like growth factor I and growth hormone receptor genes. J Nutr 1995;125:874- 879.
Schmidt LE, Arfken CL, Heins JM. Evaluation of nutrient intake in subjects with non-insulin-dependent diabetes mellitus. J Am Diet Assoc 1994;94:773-774.
Arquilla ER, Packer S, Tarmas W, Miyamoto S. The effect of zinc on insulin metabolism. Endocrinology 1978;103:1440- 1449.
Chausmer AB. Zinc, Insulin and Diabetes. J Am Coll Nutrition 1998;17:109-115.
Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol 2004;559:157-167.
Bancila V, Cens T, Monnier D, Chanson F, Faure C, Dunant Y, et al. Two SUR1-specific histidine residues mandatory for zinc-induced activation of the rat KATP channel. J Biol Chem 2005;280:8793-8799.
Begin-Heick N, Dalpe-Scott M, Rowe J, Heick HM. Zinc supplementation attenuates insulin secretory activity in pancreatic islets of the ob/obmouse. Diabetes 1985;34:179-184.
Wolman SL, Andreson GH, Marliss EB, Jeejeebhoyk N. Zinc in total parenteral nutrition: requeriments and metabolic effects. Gastroenterology 1979;76:458-467.
Mertz W. Chromium research from a distance: from 1959 to 1980. J Am Coll Nutr 1998;17:544-547.
Martin J, Wang ZQ, Zhang X, Wachtel D, Volaufova J, Matthews DE, et al. Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 Diabetes. Diab Care 2006;29:1826-1832.
Trow LG, Lewis J, Greenwood RH, Sampson MJ, Self KA, Crews HM, et al. Lack of effect of dietary chromium supplementation on glucose tolerance, plasma insulin and lipoprotein levels in patients with type 2 diabetes. Int J Vitam Nutr Res 2000;70:14-18.
Kalman DS. Chromium picolinate and type 2 diabetes. Am J Clin Nutr 2003;78:192-193.
Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 2004;63:41-47.
Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, et al. Chromium activates GLUT4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 2006;20:857-870.
McKenzie RC, Arthur JR, Becket GJ. Selenium and the regulation of Cell Signaling, Growth, and Survival: Molecular and Mechanistic Aspects. Antioxid Redox Signal 2002;4:339-351.
Battell ML, Delgatty HL, McNeill JH. Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem 1998;179:27-34.
Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in US adults. Diabetes Care 2007;30:829-834.
Drake EN. Cancer chemoprevention: Selenium as a prooxidant, not an antioxidant. Med Hypoteses 2006;67:318-322.
Fridlyan LE, Philipson LH. Oxidative reactive species in cell injury: mechanism in diabetes mellitus and therapeutic approach. Ann NY Acad Sci 2005;1006:136-151.
Gkouvatsos K, Papanikolaoub G, Pantopoulosa K. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta 2011 doi:10.1016/j.bbagen.2011.10.013.
Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis 2001;21:27-41.
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 2007;1768:1976-1990.
Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 2004;291:711-717.
Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism 2006;55:1042-1045.
Dongiovanni P, Valenti L, Ludovica FA, Gatti S, Cairo G, Fargion S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol 2008;172:738-747.
Minamiyama Y, Takemura S, Kodai S, Shinkawa H, Tsukioka T, Ichikawa H, et al. Iron restriction improves type 2 diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Am J Physiol Endocrinol Metab 2010;298:E1140-E1149.