2002, Número 1
<< Anterior Siguiente >>
Microbiología 2002; 44 (1)
Efectos a corto plazo de Glomus claroideum y Azospirillum brasilense sobre el crecimiento y actividad de la fosfatasa ácida en raíz de Carica papaya bajo condiciones de limitación por fósforo
Alarcón A, Davies Jr FT, Egilla JN, Fox TC, Estrada-Luna AA, Ferrera-Cerrato R
Idioma: Ingles.
Referencias bibliográficas: 61
Paginas: 31-37
Archivo PDF: 83.76 Kb.
RESUMEN
Algunas investigaciones han demostrado que los hongos micorrízicos arbusculares pueden modificar la actividad enzimática de la raíz (fosfatasa ácida o alcalina), sin embargo, ésta se desconoce en cultivos como papaya, la cual es frecuentemente establecida en suelos con problemas de limitación por fósforo. El objetivo del trabajo consistió en evaluar el efecto de la inoculación de
Glomus claroideum (Gc) y de la cepa
Azospirillum brasilense VS-7 (Ab) sobre el crecimiento y actividad enzimática de la fosfatasa ácida en raíz de
Carica papaya cv. Maradol roja establecida bajo condiciones de limitación por fósforo. Se consideraron cuatro tratamientos 1) Inoculación con Gc, 2) Inoculación con Ab, 3) inoculación con Gc+Ab y, 4) testigo. Las plantas fueron trasplantadas en un sustrato que consistió de la mezcla de arena y suelo limo-arenoso, a la cual se aplicó solución nutritiva de Long Ashton con 11 mg de P ml-1. El crecimiento de las plantas fue limitado por la deficiencia de P. Las plantas inoculadas con ambos microorganismos presentaron mayor materia seca y área foliar en comparación con plantas testigo. Las plantas inoculadas con Gc mostraron mayor área foliar que las plantas testigo. No se observaron diferencias significativas en la relación área foliar, área foliar específica y contenido de clorofila. No se observaron diferencias significativas en la tasa de crecimiento del tallo entre las plantas inoculadas con Gc y Gc+Ab. Las plantas con Gc incrementaron 3.4 veces la población de las bacterias en comparación con la población cuantificada en las plantas inoculadas con Ab. La actividad enzimática de la fosfatasa ácida en raíz, tanto soluble como extractable, fue más alta en las plantas inoculadas con Gc. Se hace la discusión de las posibles interacciones que se tuvieron entre los microorganismos inoculados y la condición de limitación de P en las que fueron establecidas las plantas.
REFERENCIAS (EN ESTE ARTÍCULO)
Abbot, K, Robson, AD and Gazey C. 1992. Selection of inoculant vesicular-arbuscular mycorrhizal fungi. Methods in Microbiol. 24:1-21.
Abeles FB, Morgan PW, and Salveit ME. 1992. Ethylene in plant biology. Academic Press, San Diego. 414 p.
Aguilera-Gomez L, Davies FT Jr, Olalde-Portugal V, Duray SA, and Phavaphutanon L. 1999. Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plants growth of chile ancho pepper (Capsicum annuum L. cv San Luis). Photosynthetica 36:441-449.
Andrade G, Linderman RG, and Berthlenfalvay GJ. 1998. Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79-87.
Azcon R. 2000. Papel de la simbiosis micorrizica y su interacción con otros microorganismos rizosféricos en el crecimiento vegetal y sostenibilidad agrícola. pp. 1-35. In Alarcón A., Ferrera-Cerrato R (Eds). Ecología, fisiología y biotecnología de la micorriza arbuscular. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Estado de México. Mundi Prensa, México.
Azcon R, Barea JM, and Hayman DS. 1976. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria Soil Biol Biochem 8:135-138.
Bago B, and Azcón-Aguilar C. 1998 Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.). Z. Pflanzenernähr. Bodenk. 160:333-339.
Bashan Y, and Levanony H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Bot 36:591-608.
Bashan Y, Holguin G, y Ferrera-Cerrato R. 1996a. Interacciones entre plantas y microorganismos benéficos. I. Azospirillum. Terra 14:159:194.
Bashan Y, Holguin G, y Ferrera-Cerrato R. 1996b. Interacciones entre plantas y microorganismos benéficos. II. Bacterias asociativas de la rizosfera. Terra 14:195-210.
Bashan Y, Ream Y, Levanony H, and Sade A. 1989. Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd Can J Bot 67:1317-1324.
Becard G, and Fortin JA. 1988. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211-218.
Becard G, Beguiristain T, and Nagahashi G. 1997. Signaling in plants and root-infecting fungi associations. pp 164-177. In Flores HE, Lynch JP, Eissenstat D (Eds). Radical biology: Advances and perspectives on the function of plant roots. American Society of Plant Physiologists. Maryland, USA.
Bethlenfalvay GJ, Reyes-Solis MG, Camel SBN, and Ferrera-Cerrato R. 1991. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plantarum 82:423-432.
Biermann B, and Linderman RG. 1981. Quantifying vesicular-arbuscular mycorrhizae. A proposed method towards standardization. New Phytol 87:63-67.
Bolan, NS. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189-207.
Boller, T. 1988. Ethylene and the regulation of antifungal hydrolases in plants. Oxford Survey Plan Molecular Cell Biol 5:145-174.
Brown KM, Borch K, and Lynch, JP. 1998. Ethylene mediation of low phosphorus responses in roots. pp. 344-346. In Lynch JP, Deikman J (Eds.). Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystems processes. American Society of Plant Physiologists. Volume 19 Maryland USA.
Chamizo A, Ferrera-Cerrato, R. y Varela, L. 1998. Identificación de especies de un consorcio del género Glomus. Rev Mex Micol 14:37-40.
Davies FT Jr., and Linderman, RG. 1991. Short term effects of phosphorus and VA-mycorrhizal fungi on nutrition, growth and development of Capsicum annuum L. Scientia Hortic 45:333-338.
Davies FT Jr., Potter JR, and Linderman, RG. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139:289-294.
Davies FT Jr., Potter JR, and Linderman, RG. 1993 Drought resistance of mycorrhizal pepper plants independent of leaf P concentration - response in gas exchange and water relations. Physiol Plantarum 87:45-53.
Ezawa T, Kuwahara S, Sakamoto K, Yoshida T, and Saito M. 1999. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, Glomus etunicatum. Mycologia 91:636-641.
Ferrera-Cerrato R. 1995. Efecto de rizosfera. pp. 36-53. In Ferrera-Cerrato R, Pérez-Moreno J (Eds). Agromicrobiología, elemento útil en la agricultura sustentable. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Estado de México.
Fries LLM, Pacovsky RS, Safir GR, and Kaminski J. 1998. Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plantarum 103:162-171.
Gao S, Pan WL, and Koening RT. 1998. Integrated root system age in relation to plant nutrient uptake activity. Agron J 90:505-510.
Gilbert GA, Vance CP, and Allan DL. 1998. Regulation of white lupin root metabolism by phosphorus availability. pp. 157-167. In Lynch JP, Deikman J (Eds). Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystems processes. American Society of Plant Physiologists. Volume 19 Maryland, WI. USA.
Gilbert GA, Knight JD, Vance CP, and Allan DL. 1999. Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22801-810.
Gnekow MA, and Marschner H. 1989. Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) rootstock cuttings. Plant Soil 119:285-293.
Gonzalez ChC, and Ferrera-Cerrato R. 1990. Effect of vesicular arbuscular mycorrhizae on tissue culture-derived plantlets of strawberry. HortScience 25:903-905.
Gryndler M, and Vosatka M. 1996. The response of Glomus fistulosum-maize mycorrhiza to treatments with fractions from Pseudomonas putida. Mycorrhiza 6:207-211.
He CJ, Morgan PW, and Drew MC. 1992. Enhanced sensitivity to ethylene in nitrogen-starved or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol 98:137-142.
Hetrick BAD. 1991. Mycorrhizas and root structure. Experientia 47:355-362.
Hurtado T, Sieverding E. 1986. Estudio del efecto de hongos formadores de micorriza vesículo-arbuscular (MVA) en cinco especies latifoliadas regionales en la zona geográfica del Valle del Cauga, Colombia. Suelos Ecuatoriales 16:109-115.
Holguin G, Bashan Y, y Ferrera-Cerrato R. 1996. Interacciones entre plantas y microorganismos benéficos. III. Procedimientos para el aislamiento y caracterización de hongos micorrízicos y rizobacterias promotoras del crecimiento en plantas. Terra 14:211-227.
Jaizme-Vega MC, and Azcon R. 1995. Responses of some tropical and subtropical cultures to endomycorrhizal fungi. Mycorrhiza 5:213-217.
Joner EJ, and Jakobsen I. 1995. Growth and extracellular phosphatase-activity of arbuscular mycorrhizal hyphae as influenced by soil organic-matter. Soil Biol Biochem 27:1153-1159.
Kim KY, Jordan D, and McDonald GA. 1998. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79-87.
Linderman RG. 1993. Efectos de las interacciones microbianas de la micorrizosfera en la salud y crecimiento vegetal. pp. 138-152. In Ferrera-Cerrato R, Quintero LR (Eds). Agroecología, Sostenibilidad y Educación. Centro de Edafología, Colegio de Postgraduados. Montecillo, Estado de México.
Lovato PE, Gianinazzi-Pearson V, Trouvelot A, and Gianinazzi S. 1996. The state of art of mycorrhizas and micropropagation. Adv Hort Sci 10:46-52.
Marschener H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203-207.
Marschner P, Crowley DE, and Higashi RM. 1997. Root exudation and physiological status of a rrot-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11-20.
Meier R, and Charvat I. 1993. Reassessment of tetrazolium bromide as a viability stain for spores of vesicular-arbuscular mycorrhizal fungi. Amer J Bot 80:1007-1015.
Meyer JR, and Linderman RG. 1986. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191-196.
Natr L. 1992. Mineral nutrients - a obiquitous stress factor for photosynthesis. Photosynthetica 27:271-294.
Paulitz TC, and Linderman RG. 1989. Interactions between fluorescent pseudomonas and VA mycorrhizal fungi. New Phytol 113-37-45.
Pearson JN, and Schweiger P. 1993 Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders associated with subterraneum clover: dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 124:215-219.
Phillips JM, and Hayman DS. 1970 Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment to infection. Trans Br Mycol Soc. 55:158-161.
Rapparini F, Baraldi R, Bertazza G, Branzanti B, and Predieri S. 1994. Vesicular-arbuscular mycorrhizal inoculation of micropropagated fruit trees. J. Hortic Sci 69:1101-1109.
Saito M. 1995 Enzyme-activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker and Hall. New Phytol 129:425-431.
Salisbury FB, and Ross CW. 1994) Fisiología vegetal Grupo Editorial Iberoamérica. México, D.F. 759 p.
SAS Institute, Inc. 1995. SAS/STAT User’s guide, version 6.03. SAS Institute, Cray, North Carolina.
Schachtman DP, Reid RJ, and Ayling SM. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447-453.
Staley TE, Lawrence EG, and Nance EL. 1992. Influence of a plant growth-promoting pseudomonas and vesicular-arbuscular mycorrhizal fungus on alfalfa and birdsfoot trefoil growth and nodulation. Biol Fertil Soils 14:175-180.
Tabatabai MA. 1982. Soil enzymes. pp. 903-947. .In Page AL, Miller RH, Keeney DR (Eds). Methods of soil analysis. Part 2. Chemical and Microbiological properties. Second edition. Agronomy). ASA-SSSA Publishers. Madison, Wisconsin. USA.
Tarafdar JC. 1995. Visual demostration of in vivo acid phosphatase activity of VA mycorrhizal fungi. Current Sci 69:541-543.
Toro M, Azcon R, and Herrera R. 1996. Effects on yield and nutrition on mycorrhizal and nodulated Pueraria phaseoloides exerted by P-solubilizing rhizobacteria. Biol Fertil Soils 21:23-29.
Vancura V, Lasik J, and Debrivnaya IE. 1979. Polysaccharides in plant rhizosphere. Mikrobiol Zh 41:343-350.
Vestberg M. 1992. Arbuscular mycorrhizal inoculation of micropropagated strawberry and field observations in Finland. Agronomie 12:865-867.
Vierheilig H, Alt-Hug M, Wiemken, and Boller T. 2001. Hyphal in vitro growth of the arbuscular mycorrhizal fungus Glomus mosseae is affected by chitinase but not by ß-1,3-glucanase. Mycorrhiza 11:279-282
Yano K, and Kojima K. 1998. Plant phosphorus demand affects root responses to locally applied phosphorus in wheat: Plasticity in specific root length and acid phosphatase exudation. pp. 335-337. In Lynch JP, Deikman J (Eds). Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystems processes. American Society of Plant Physiologists. Volume 19 Maryland, WI. USA.