2011, Número 5
<< Anterior Siguiente >>
Rev Invest Clin 2011; 63 (5)
Magnetorrecepción: la piedra angular de la orientación aeroespacial, balance y locomoción humana
Rizzo-Sierra CV, Bayona EA, Leon-Sarmiento FE
Idioma: Español
Referencias bibliográficas: 70
Paginas: 509-515
Archivo PDF: 170.03 Kb.
RESUMEN
Las investigaciones actuales son indicativas de la presencia de una brújula magnética en los seres vivos, incluyendo los humanos. Las dos explicaciones más aceptadas que demuestran la existencia de magnetorreceptores en seres vivos se conocen como par radical y explicación magnetita, las cuales se presentan aquí con sus respectivos soportes experimentales. Las evidencias indican la presencia de cristales de magnetita en otolitos de diferentes especies de animales inferiores; por ello, la magnetita encontrada en diferentes órganos en humanos permite anticipar la existencia de este elemento, también en los otolitos del sistema vestibular y, además, respalda el que la magnetorrecepción sea una función adicional del sistema vestibular humano. Estas señales geomagnéticas modularían el equilibrio, movimiento y posición espacial del cuerpo humano, de acuerdo con los valores de gravedad existente. Este novedoso campo de otomagnetismo abre nuevas áreas de investigación, que serán muy útiles para la comprensión de los mecanismos relacionados con el balance, equilibrio, orientación y posición del cuerpo humano en el espacio, tanto en individuos normales como en pacientes con trastornos de balance, marcha y movimiento. Se considera, por lo tanto, que éste podría ser el punto de partida para la aplicación de nuevos programas de neurorehabilitación humana en aquellos trastornos neurológicos asociados con alteraciones en la magnetorrecepción humana que ocurran por tierra, mar o aire.
REFERENCIAS (EN ESTE ARTÍCULO)
Wiltschko R, Wiltschko W. Magnetic Orientation in Animals. Berlin: Springer; 1995.
Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 2005; 6: 703-12.
Kirschvink JL. Birds, bees and magnetism: a new look at the old problem of magnetoreception. Trends Neurosci 1982; 5: 160-7.
Kirschvink JL, Walker MM, Diebel CE. Magnetite based magnetoreception Curr Opin Neurobiol 2001; 11: 462-7.
Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 1992; 89: 7683-7.
Dobson J, Grassi P. Magnetic properties of human hippocampal tissue-evaluation of artifact and contamination sources. Brain Res Bull 1996; 39: 255-9.
Beyhum W, Hautot D, Dobson J, et al. Magnetic biomineralization in Huntington’s disease transgenic mice. J Phys Conf Ser 2005; 17: 50-3.
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 2001; 496: 1-5.
Hautot D, Pankhurst QA, Khan N, et al. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. Proc R Soc Lond B 2003; 207(Suppl.): S62-S64.
Kobayashi A, Yamamoto N, Kirschvink J. Studies of inorganic crystals in biological tissue: magnetite in human tumor. J Japan Soc Powder Metall 1997; 44: 294-300.
Tascioglu AB. Brief review of vestibular system anatomy and its higher order projections. Neuroanatomy 2005; 4: 24-7.
Schulten K, Swenberg CE, Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z Phys Chem NF 1978; 111: 1-5.
Walcott C, Gould JL, Kirschvink JL. Pigeons have magnets. Science 1979; 205: 1027-9.
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J 2000; 78: 707-18.
Shcherbakov VP, Winklhofer M. The osmotic magnetometer: a new model of a magnetite-based magnetoreceptor in animals. Eur Biophys J 1999; 28: 380-92.
Townsend JS. A modern approach to quantum mechanics. New York: University Science Books; 2000.
Lemmens P, Millet P. Spin-Orbit-Topology, a triptych. Lect Notes Phys 2004; 645: 433-77.
Carpenter DO, Airapetyan S. Biological Effects of Electric and Magnetic Fields: Sources and Mechanisms. London: Academic Press; 1994.
Semm P, Nohr D, Demaine C, et al. Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 1984; 155: 283-8.
Semm P, Demaine C. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 1986; 159: 619-25.
Semm P, Nohr D, Demaine C, et al. Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 1984; 155: 283-8.
Semm P, Nohr D, Demaine C, et al. Avian Navigation. New York: Springer; 1982.
Deutschlander ME, Borland SC, Philips JB. Extraocular magnetic compass in newts. Nature 1999; 400: 324-5.
Demaine C, Semm P. The avian pineal gland as an independent magnetic sensor. Neurosci Lett 1985; 62: 119-22.
Walker MM, Diebel CE, Haugh CV, et al. Structure and function of the vertebrate magnetic sense. Nature 1997; 390: 371-6.
Diebel CE, Proksch R, Green CR, et al. Magnetite defines a vertebrate magnetoreceptor. Nature 2000; 406: 299-302.
Fleissner G, Holtzkamp-Rötzler E, Hanzlik M, et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 2003; 458: 350-60.
Winklhofer M, Holtkamp-Rotzler E, Hanzlik M, et al. Clusters of superparamagnetic magnetite particles in the upper-beak tissue of homing pigeons: evidence of a magnetoreceptor. Eur J Mineral 2001; 13: 659-69.
Schultheiss-Grassi P, Dobson J. Magnetic analysis of human brain tissue. Biometals 1999; 12: 67-72.
Schultheiss-Grassi P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals 1997; 10: 351-5.
Mann S, Sparks NH, Walker MM, et al. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 1988; 140: 35-49.
Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nature Rev Microbiol 2004; 2: 217-30.
Kirschvink JL, Douglas SJ, MacFadden BJ. Magnetite biomineralization and magnetoreception in organisms. New York: Plenum; 1985.
Kirschvink JL, Walker MM, Diebel CE. Magnetite based magnetoreception Curr Opin Neurobiol 2001; 11: 462-7.
Presti D, Pettigrew JD. Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 1980; 285: 99-101.
Kirschvink JL, Gould JL. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 1981; 13: 181-201.
Shcherbakov VP, Winklhofer M. The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals Eur Biophys J 1999; 28: 380-92.
Bacri JC, Cabuil V, Cebers A, et al. Flattening of ferro-vesicle undulations under a magnetic field. Europhys Lett 1996; 33: 235-40.
Davila AF, Fleissner G, Winklhofer M, et al. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 2003; 28: 647-52.
Vilches-Troya J, Dunn RF, O’Leary DP. Relationship of the vestibular hair-cells to magnetic particles in the otolith of the guitarfish sacculus. J Comp Neurol 1984; 226: 489-94.
Hanson M, Westerberg H, Oblad M. The role of magnetic statoconia in dogfish (Squalus acanthias). J Exp Biol 1990; 151: 205-18.
Harada Y, Taniguchi M, Namatame H, et al. Magnetic materials in otoliths of bird and fish lagena and their function. Act Laryngol 2001; 121: 590-5.
Winklhofer M, Kirschvink JL. A quantitative assessment of torque- transducer models for magnetoreception. J R Soc Interface 2010; 7(Suppl.): S273-S289.
Begall S, Cerveny’ J, Neef J, et al. Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA 2008; 105: 13451-5.
Burda H, Begall S, Cerveny’ J, et al. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci USA 2009; 106: 5708-13.
Leon-Sarmiento FE, Bayona-Prieto J, Cadena Y. Plasticidad neuronal, neurorehabilitación y trastornos del movimiento: el cambio es ahora. Act Neurol Col 2008; 24: 40-2.
Clément G, Reschke MF. Neuroscience in Space. New York: Springer; 2008.
Rizzo-Sierra CV, Leon-Sarmiento FE. Pathophysiology of movement disorders due to gravity transitions: The channelopathy linkage in human balance and locomotion. Med Hypoth 2011; 77: 97-100.
Davies E, Knox E, Donaldson I. The usefulness of nimodipine, an L-calcium channel antagonist, in the treatment of tinnitus. Br J Audiol 1994; 28: 125-9.
Baguley DM, Jones S, Wilkins I, et al. The inhibitory effect of intravenous lidocaine infusion on tinnitus after translabyrinthine removal of vestibular schwannoma: a double-blind, placebo- controlled, crossover study. Otol Neurotol 2005; 26: 169-76.
Marcondes RA, Sanchez TG, Kii MA, et al. Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study. Eur J Neurol 2010; 17: 38-44.
Bent L, McFadyen B, Merkley V, et al. Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait. Neurosci Lett 2000; 279: 157-60.
Balter S, Stokroos R, Akkermans E, et al. Habituation to galvanic vestibular stimulation for analysis of postural control abilities in gymnasts. Neurosci Lett 2004; 366: 71-5.
Fitzpatrick R, Wardman D, Taylor J. Effects of galvanic vestibular stimulation during human walking. J Physiol 1999; 517: 931-9.
Rosengren SM, Colebatch JG. Cervical dystonia responsive to acoustic and galvanic vestibular stimulation. Mov Disord 2006; 21: 1495-9.
Scinicariello AP, Eaton K, Inglis JT, et al. Enhancing human balance control with galvanic vestibular stimulation. Biol Cybernet 2001; 84: 475-80.
Fitzpatrick R, Day B. Probing the human vestibular system with galvanic stimulation. J Appl Physiol 2004; 96: 2301-16.
Kirschvink JL, Winklhofer M, Walker MM. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J R Soc Interface 2010; 7(Suppl.): S179-S191.
Olesen J. Calcium entry blockers in the treatment of vertigo. Ann N Y Acad Sci 1988; 522: 690-7.
Perin P, Soto E, Vega R, et al. Calcium channels functional roles in the frog semicircular canal. NeuroReport 2000; 11: 417-20.
Yu W, Horowitz SH. Treatment of sporadic hemiplegic migraine with calcium-channel blocker verapamil. Neurol 2003; 60: 120-1.
Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007; 55: 187-99.
Silvanto J, Pascual-Leone A. State-dependency of transcranial magnetic stimulation. Brain Topogr 2008; 21: 1-10.
Leon-Sarmiento FE, Elfakhani M, Boutros NN. The motor evoked potential in AIDS and HAM/TSP: state of the evidence. Arq Neuropsiquiatr 2009; 67: 1157-63.
Teo JT, Swayne OB, Rothwell JC. Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. Clin Neurophysiol 2007; 118: 1649-51.
Lang N, Speck S, Harms J, et al. Dopaminergic potentiation of rTMS-induced motor cortex inhibition. Biol Psychiat 2008; 63: 231-33.
Leon-S FE, Torres-Hillera M. Clinical Neurophysiology in Neurotoxicology. En: Uribe MG (ed.). Neurotoxicología. Bogotá: Exlibris; 2001, p. 287-99.
Uribe CS, Franco A, Hernández D, Leon-Sarmiento FE. Electrodiagnóstico, electroencefalografía, potenciales evocados, electromiografía, estimulación magnética transcraneal. En: Uribe CS, Arana A, Lorenzana P (eds.). Neurología. 7a ed. Medellín: CIB; 2009, p. 40-80.
Leon-Sarmiento FE, Bayona-Prieto J, Bayona E. Neurorehabilitación: Otra revolución para el siglo XXI. Act Med Col 2009; 34: 88-92.
Bayona-Prieto J, Leon-Sarmiento FE, Bayona E. Neurorehabilitation. En: Uribe CS, Arana A, Lorenzana P (eds.). Neurología. 7a ed. Medellin: CIB; 2009, p. 745-8.