2009, Número 5
<< Anterior Siguiente >>
Rev Invest Clin 2009; 61 (5)
RNA de interferencia: Origen y aplicación en el silenciamiento de genes
Ortiz-Quintero B
Idioma: Español
Referencias bibliográficas: 93
Paginas: 412-427
Archivo PDF: 190.88 Kb.
RESUMEN
El RNA de interferencia (RNAi) es un mecanismo biológico
conservado que inhibe específicamente la expresión de genes a
nivel post-transcripcional, en respuesta a la presencia de RNA
de doble hebra que proviene de la propia célula (microRNA o
miRNA) o del exterior de la misma (RNA pequeños de interferencia
o siRNA). Identificado por primera vez como un mecanismo
anti-viral conservado evolutivamente, el RNAi surge
como un proceso natural de regulación de la expresión de genes
en eucariotes y como una potente herramienta para el “silenciamiento”
artificial de genes en investigación. Así, en los
últimos 10 años, el RNAi se ha convertido en una invaluable y
estandarizada herramienta de experimentación para la caracterización
funcional de genes en todo laboratorio y en prácticamente
toda área de la investigación científica. La siguiente
revisión describe el RNAi como proceso biológico y su aplicación
como herramienta en investigación experimental, basándose
particularmente en las dudas que surgen al montar las
técnicas por
primera vez en un laboratorio. La información
contenida es simple y pretende difundir las ventajas del RNAi
e incluye las fuentes de información técnica especializada para
facilitar la aplicación del RNAi en cualquier laboratorio. El escrito
incluye información acerca del desarrollo de estrategias
para la aplicación del RNAi en organismos vivos y su aplicación
en la terapéutica, así como las pruebas en fase clínica que
se llevan a cabo actualmente por compañías farmacéuticas.
REFERENCIAS (EN ESTE ARTÍCULO)
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-11.
Ratcliff F, Harrison BD, Baulcombe DC. A similarity between viral defense and gene silencing in plants. Science 1997; 276: 1558-60.
Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing. Plant Cell 1998; 10: 937-46.
Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 1997; 16: 3675-84.
Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 1992; 22: 3343-53.
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363-6.
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: doublestranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101: 25-33.
Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188-200.
Hammond SM, Bernstein E, Beach D, Hannon GJ An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293-6.
Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001; 107: 309-21.
Schwarz DS, Hutvagner G, Haley B, Zamore PD. Evidence that RNAs function as guides, not primers, in the Drosophila and human RNAi pathway. Mol Cell 2002; 10: 537-48.
Williams BR. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans 1997; 25: 509-13.
Gil J, Alcamí J, Esteban M. Induction of apoptosis by doublestranded- RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol 1999; 19: 4653-63.
Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 2000; 5: 107-14.
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494-8.
Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742-7.
Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002; 21: 5864-74.
Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua- Tor L. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 2005; 12: 340-9.
Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858-62.
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853-8.
Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862-4.
Saxena S, Jónsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003; 278: 44312-9.
Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003; 100: 9779-84.
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86-9.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901-06.
Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantamencodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hidin Drosophila. Cell 2003; 113: 25-36.
Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13: 790-5.
Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83-6.
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2000; 293: 834-8.
Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003; 17: 438-42.
Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 2007; 12: 1850-64.
Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J. Computational and experimental identification of C. elegans microRNAs. Mol Cell 2003; 11: 1253-63.
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36(Database issue): D154-D158.
Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 2005; 1: e13.
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006; 125: 887-901.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415-9.
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 2006; 125: 887-901.
Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in C. elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 2: 671-80.
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP- dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10: 185-91.
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115: 787-98.
Doench JG, Sharp PA Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18: 504-11.
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15-20.
Wang B, Love TM, Call ME, Doench JG, Novina CD. Recapitulation on Short RNA-Directed Translation Gene Silencing In Vitro. Mol Cell 2006; 22: 553-60.
Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005; 309: 1573-6.
Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 2005; 102: 16961-6.
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553-63.
Petersen CP, Bordeleau ME, Pelletier J, Sharp PA. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 2006; 21: 533-42.
Wang B, Yanez A, Novina CD. MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci 2008; 105: 5343-8.
Liu J, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol 2005; 7: 719-23.
Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-55.
Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 2007; 130(1): 89-100.
Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448(7149): 83-6
Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor- independent, Dicer-dependent small RNAs. Genes Dev 2008; 22: 2773-85.
Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008; 453: 803-06.
Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453: 539-43.
Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004; 32. W135–W141.
Santoyo J, Vaquerizas JM, Dopazo J. Highly specific and accurate selection of siRNAs for high-throughput functional assays. Bioinformatics 2005; 21: 1376-82.
Reynolds A, et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326-30.
Huesken D, et al. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 2005; 23: 995-1001.
Shabalina SA, Spiridonov AN, Ogurtsov AY. Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 2006; 7: 65-81.
Takasaki S, Kotani S, Konagaya A. An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle 2004; 3: 790-5.
Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004; 316: 1050-8.
Judge AD, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457-62.
Hornung V, et al. Sequence-specific potent induction of interferon- alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11: 263-70.
Czauderna F, et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31: 2705-16.
Morrissey DV, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol 2005; 23: 1002-7.
Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 2002; 99: 14943-5.
Devroe E, Silver PA. Retrovirus-delivered siRNA. BMC Biotechnol 2002; 2: 15.
Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263-7.
Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239-42.
Kappel S, Mattess Y, Kaufman M, Strebhardt K. Silencing of mammalian genes by tetracycline-inducible shRNA expression. Nature Protocols 2007; 2: 3257-60.
Wiznerowicz M, Szulc J, Trono D. Tuning silence: conditional systems for RNA interference. Nat Methods 2006; 3: 682-8.
Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005; 11: 50-5.
Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006; 439: 89-94.
Shen J, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor. Gene Ther 2006; 13: 225-34.
Tolentino MJ, et al. Intravitreal injection of VEGF small interfering RNA inhibits growth and leakage in a nonhuman primate laser-induced model of chroidal neovascularization. Retina 2004; 24: 132-8.
Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005; 11: 423-8.
Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816-20.
Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005; 65: 6910-8.
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65: 8984-92.
Kumar P, et al. T Cell-Specific siRNA Delivery suppresses HIV-1 Infection in Humanized Mice. Cell 2009; 134: 577-86.
Robbins M, et al. 2’-O-Methyl-modified RNAs act as TLR7 anatgonist. Mol Ther 2007; 15: 1663-9.
Grim D, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537-41.
An DS, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006; 14: 494-505.
Bitko V, et al. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med 2005; 11: 50-5.
Soutschek J, et al. Therapeutic silencing o fan endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173-8.
Zimmermann TS, et al. RNAi-mediated gene silencing in nonhuman primates. Nature 2006; 441: 111-14.
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastactic Ewing’s sarcoma. Cancer Res 2005; 65: 8984-92.
Song E, et al. Antibody mediated in vivo delivery of siRNA via cell-surface receptors. Nature Biotechnol 2005; 23: 709-17.
McNamara JO, et al. Cell type-specific delivery of siRNA with aptamer-siRNA chimeras. Nature Biotechnol 2006; 24: 1005-15.
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65: 8984-92.
Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243-7.
Huang B, Schiefer J, Sass C, Landwehrmeyer GB, Kosinski CM, Kochanek S. High-capacity adenoviral vector-mediated reduction of Huntington aggregate load in vitro and in vivo. Hum Gene Ther 2007; 18: 303-11.