2009, Número 1
<< Anterior Siguiente >>
Rev Invest Clin 2009; 61 (1)
Mecanismos transgeneracionales en el desarrollo de enfermedades metabólicas
Zambrano E
Idioma: Español
Referencias bibliográficas: 73
Paginas: 41-52
Archivo PDF: 427.74 Kb.
RESUMEN
Estudios epidemiológicos en humanos y con animales de experimentación
han demostrado que el ambiente subóptimo intrauterino
y durante la lactancia afecta el crecimiento y
predispone al individuo al desarrollo de enfermedades en la
vida adulta. Una de las características más interesantes de
la programación del desarrollo es la evidencia de que las consecuencias
adversas del ambiente intrauterino alterado pasa a
través de las generaciones. Para obtener el fenotipo transgeneracional
es necesario que el ambiente negativo esté en contacto
en la vida fetal o neonatal, el fenotipo fisiológico o
enfermedad puede ser transmitido a través de la línea germinal
sin que las siguientes generaciones hayan sido expuestas
directamente al factor ambiental. La hipótesis ha sido bien
aceptada gracias a los estudios realizados con animales de experimentación:
1) restricción nutricional o sobrealimentación durante
el embarazo y la lactancia; 2) restricción del flujo
sanguíneo útero placentario; 3) exposición fetal a concentraciones
altas de glucocorticoides, y 4) diabetes materna gestacional
experimental. La restricción proteínica materna en la rata adversamente
afecta el metabolismo de la glucosa de la segunda
generación, los efectos varían de acuerdo al sexo y al periodo
de desnutrición. Los estudios con dexametasona a ratas preñadas
han demostrado los efectos metabólicos transgeneracionales
tanto por la vía materna como la paterna. La primera
generación de hembras diabéticas provenientes de ratas F0
tratadas con estreptozotocina durante el embarazo, tienen
crías F2 con alteración en el metabolismo de carbohidratos.
Los resultados obtenidos sugieren que los mecanismos involucrados
en la programación del desarrollo son epigenéticos y
no debido a mutaciones en la secuencia de DNA. Muchos individuos
en todo el mundo han sufrido desnutrición, estrés, hiperglicemia
y otros ambientes negativos durante el embarazo
y/o la lactancia. El reto durante este periodo crítico del desarrollo
puede inducir la programación inadecuada y adversamente
alterar no sólo a la generación F1 sino a las siguientes
generaciones. La prevención o tratamiento de estas condiciones
ayudaría a minimizar el riesgo de la transmisión de enfermedades
metabólicas a futuras generaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. Ilar J 2006; 47: 73-82.
Ozanne SE, Hales CN. The long-term consequences of intrauterine protein malnutrition for glucose metabolism. Proc Nutr Soc 1999; 58: 615-19.
Zambrano E, Bautista CJ, Deas M, Martinez-Samayoa PM, Gonzalez-Zamorano M, Ledesma H, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 2006; 571: 221-30.
Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 1999; 70: 811-6.
Strauss RS. Effects of the intrauterine environment on childhood growth. Br Med Bull 1997; 53: 81-95.
Nijland MJ, Ford SP, Nathanielsz PW. Prenatal origins of adult disease. Curr Opin Obstet Gynecol 2008; 20: 132-38.
Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature 2004; 427: 411-12.
Martin-Gronert MS, Tarry-Adkins JL, Cripps RL, Chen JH, Ozanne SE. Maternal protein restriction leads to early life alterations in the expression of key molecules involved in the aging process in rat offspring. Am J Physiol Regul Integr Comp Physiol 2008; 294: R494-R500.
Hanefeld M, Leonhardt W. Das metabolische syndrome. Dtsch Gesundheitwes 1981; 36: 545-51.
Traish AM, Guay AT, Feeley R, Saad F. The Dark Side of Testosterone Deficiency: I. Metabolic Syndrome & Erectile Dysfunction. J Androl 2008. DOI: 108.005215.
Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287: 356-9.
Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988- 1994. Arch Intern Med 2003; 163: 427-36.
Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 2004; 292: 1440-6.
Skinner MK. Endocrine disruptors and epigenetic transgenerational disease etiology. Pediatr Res 2007; 61: 48R-50R.
Skinner M. What is an epigenetic transgenerational phenotype? F3 or F2. Reproductive Toxicology 2008; 25: 2-6.
Rakyan V, Whitelaw E. Transgenerational epigenetic inheritance. Curr Biol 2003; 13: R6.
Waddington CH. Gene regulation in higher cells. Science 1969; 166: 639-40.
Devaskar SU, Raychaudhuri S. Epigenetics–a science of heritable biological adaptation. Pediatr Res 2007; 61: 1R-4R.
Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 2004; 180: 1-16.
Crews D, McLachlan JA. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 2006; 147: S4-S10.
Simmons RA. Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms. Pediatr Res 2007; 61: 64R-67R.
Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20: 63-8.
Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 2007; 23: 297-307.
Stewart RJ, Preece RF, Sheppard HG. Twelve generations of marginal protein deficiency. Br J Nutr 1975; 33: 233-53.
Cutfield WS, Hofman PL, Mitchell M, Morison IM. Could epigenetics play a role in the developmental origins of health and disease? Pediatr Res 2007; 61: 68R-75R.
Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002; 241: 172-82.
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293: 1089-93.
Dolinoy DC. Epigenetic gene regulation: early environmental exposures. Pharmacogenomics 2007; 8: 5-10.
Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R34-R38.
Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 2007; 97: 435-9.
Nathanielsz PW. Life in the womb: the origin of health and disease. Promethean Press. Ithaca, N.Y. 1999; 75-91.
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308: 1466-9.
Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 2006; 147: 5515-23.
Anway MD, Memon MA, Uzumcu M, Skinner MK. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 2006; 27: 868-79.
Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006; 147: S43-S49.
Pinheiro AR, Salvucci ID, Aguila MB, Mandarim-de-Lacerda CA. Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats. Clin Sci (Lond) 2008; 114: 381-92.
Lumey LH, Stein AD. Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol 1997; 146: 810-9.
Reusens B, Remacle C. Intergenerational effect of an adverse intrauterine environment on perturbation of glucose metabolism. Twin Res 2001; 4: 406-11.
Garofano A, Czernichow P, Breant B. In utero undernutrition impairs rat beta-cell development. Diabetologia 1997; 40: 1231-4.
Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 2006; 49: 1117-19.
Benyshek DC, Johnston CS, Martin JF. Post-natal diet determines insulin resistance in fetally malnourished, low birthweight rats (F1) but diet does not modify the insulin resistance of their offspring (F2). Life Sci 2004; 74: 3033-41.
Zambrano E, Martinez-Samayoa PM, Bautista CJ, Deas M, Guillen L, Rodriguez-Gonzalez GL, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 2005; 566: 225-36.
Guzman C, Cabrera R, Cardenas M, Larrea F, Nathanielsz PW, Zambrano E. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J Physiol 2006; 572: 97-108.
Zambrano E, Rodriguez-Gonzalez GL, Guzman C, Garcia-Becerra R, Boeck L, Diaz L, et al. A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. J Physiol 2005; 563: 275-84.
Bautista CJ, Boeck L, Larrea F, Nathanielsz PW, Zambrano E. Effects of a Maternal Low Protein Isocaloric Diet on Milk Leptin and Progeny Serum Leptin Concentration and Appetitive Behavior in the First 21 Days of Neonatal Life in the Rat. Pediatr Res 2008; 63: 358-63.
Lumey LH, Stein AD, Ravelli AC. Timing of prenatal starvation in women and birth weight in their first and second born offspring: the Dutch Famine Birth Cohort study. Eur J Obstet Gynecol Reprod Biol 1995; 61: 23-30.
Thamotharan M, Garg M, Oak S, Rogers LM, Pan G, Sangiorgi F, et al. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab 2007; 292: E1270-E1279.
Boloker J, Gertz SJ, Simmons RA. Gestational diabetes leads to the development of diabetes in adulthood in the rat. Diabetes 2002; 51: 1499-506.
McDonald TJ, Franko KL, Brown JM, Jenkins SL, Nathanielsz PW, Nijland MJ. Betamethasone in the last week of pregnancy causes fetal growth retardation but not adult hypertension in rats. J Soc Gynecol Investig 2003; 10: 469-73.
Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 1993; 341: 339-41.
Koenen SV, Mecenas CA, Smith GS, Jenkins S, Nathanielsz PW. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am J Obstet Gynecol 2002; 186: 812-17.
Cleasby ME, Kelly PA, Walker BR, Seckl JR. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 2003; 144: 999-1007.
Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 1998; 101: 2174-81.
Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol 2006; 38: 894-903.
Aerts L, Van Assche FA. Is gestational diabetes an acquired condition? J Dev Physiol 1979; 1: 219-25.
Kervran A, Guillaume M, Jost A. The endocrine pancreas of the fetus from diabetic pregnant rat. Diabetologia 1978; 15: 387-93.
Aerts L, Holemans K, Van Assche FA. Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab Rev 1990; 6: 147-67.
Ktorza A, Girard JR, Kinebanyan MF, Picon L. Hyperglycaemia induced by glucose infusion in the unrestrained pregnant rat during the last three days of gestation: metabolic and hormonal changes in the mother and the fetuses. Diabetologia 1981; 21: 569-74.
Aerts L, Van Assche FA. Islet transplantation in diabetic pregnant rats normalizes glucose homeostasis in their offspring. J Dev Physiol 1992; 17: 283-7.
Oh W, Gelardi NL, Cha CJ. Maternal hyperglycemia in pregnant rats: its effect on growth and carbohydrate metabolism in the offspring. Metabolism 1988; 37: 1146-51.
Oh W, Gelardi NL, Cha CJ. The cross-generation effect of neonatal macrosomia in rat pups of streptozotocin-induced diabetes. Pediatr Res 1991; 29: 606-10.
Van Assche FA, Holemans K, Aerts L. Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull 2001; 60: 173-82.
Holemans K, Aerts L, Van Assche FA. Evidence for an insulin resistance in the adult offspring of pregnant streptozotocin-diabetic rats. Diabetologia 1991; 34: 81-5.
Holemans K, Van Bree R, Verhaeghe J, Aerts L, Van Assche FA. In vivo glucose utilization by individual tissues in virgin and pregnant offspring of severely diabetic rats. Diabetes 1993; 42: 530-6.
Holemans K, Aerts L, Van Assche FA. Absence of pregnancyinduced alterations in tissue insulin sensitivity in the offspring of diabetic rats. J Endocrinol 1991; 131: 387-93.
Burdge GC, Lillycrop KA, Jackson AA, Gluckman PD, Hanson MA. The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and postweaning fat consumption. Br J Nutr 2007; 1-10.
Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 2005; 20: 345-52.
Lumey LH, Stein AD. In utero exposure to famine and subsequent fertility: The Dutch Famine Birth Cohort Study. Am J Public Health 1997; 87: 1962-6.
Lumey LH, Stein AD, Ravelli AC. Timing of prenatal starvation in women and offspring birth weight: an update. Eur J Obstet Gynecol Reprod Biol 1995; 63: 197.
Dorner G, Plagemann A, Reinagel H. Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp Clin Endocrinol 1987; 89: 84-90.
Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242-5.
Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622-8.
Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006; 14: 159-66.