2012, Número 5
<< Anterior Siguiente >>
Salud Mental 2012; 35 (5)
La hormona liberadora de tirotropina (TRH) del núcleo paraventricular hipotalámico y sistema límbico como reguladora de la homeostasis energética y de la conducta alimentaria en animales con ayuno, restricción alimentaria y anorexia
de Gortari P, González-Alzati ME, Jaimes-Hoy L, Estrada A, Mancera K, García-Luna C, Amaya MI
Idioma: Español
Referencias bibliográficas: 63
Paginas: 385-393
Archivo PDF: 119.92 Kb.
RESUMEN
La expresión y liberación de la TRH del núcleo paraventicular hipotalámico
(NPV) cambia con estímulos ambientales; en ayuno y restricción
de alimentos la liberación del péptido disminuye, reduciéndose
la tasa del metabolismo y la degradación de reservas energéticas.
Esto es una adaptación ventajosa para los animales con balance negativo
de energía. Al comparar el contenido de TRH en la eminencia
media entre animales prepúberes y adultos en ayuno de 48 horas,
observamos que los jóvenes no tienen una adaptación al déficit de
nutrimentos. Su peso baja más que en adultos (30%
vs. 11%) y la
liberación de TRH no disminuye; la degradación de TRH por PPII en
la adenohipófisis (PPII) disminuye, manteniéndose el gasto energético.
El contenido de TRH de animales prepúberes en ayuno cambió en el
hipocampo y en el núcleo
accumbens, así como en la amígdala de los
adultos comparado contra los animales con alimentación
ad libitum.
La TRH se ha propuesto como agente anorexigénico. Evaluamos
su contenido y expresión en el NPV de animales que evitan el alimento
al beber una solución de NaCl (2.5%)(AN), en otros con restricción
de alimento forzada (RAF) que ingieren la misma cantidad que AN y
en aquéllos (C) con alimentación
ad libitum. La síntesis de TRH en el
NPV y el contenido sérico de TSH disminuyen en RAF pero aumentan
en AN. La vía orexinérgica y la de NPY de AN están inactivas. La
inyección de un antagonista a CRH revierte las alteraciones de TRH y
TSH y atenúa la anorexia de AN.
REFERENCIAS (EN ESTE ARTÍCULO)
Schwartz MW, Woods SC, Porte D, Seeley RJ et al. Central nervous system control of food intake. Nature 2000;404:661-671.
Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 2007;56:27-78.
Ikemoto S, Wise R. Mapping of chemical trigger zones for reward. Neuropharmacology 2004;47:190-201.
Rolls E. Brain mechanisms underlying flavour and appetite. Philos Trans R Soc Lond B Biol Sci 2006;361:1123-1136.
Shils M, Olson J, Shike M, Ross A. Nutrición en salud y enfermedad. 9 ed. Nueva York: Lippincott Williams & Wilkins; 2002.
Gibson E. Emotional influences on food choice: sensory, physiological and psychological pathways. Physiol Behav 2006;89:53-61.
Torres S, Nowson C. Relationship between stress, eating behavior, and obesity. Nutrition 2007;23:887-894.
Serlachius A, Hamer M, Wardle J. Stress and weight change in university students in the United Kingdom. Physiol Behav 2007;92:548-553.
Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 2003;301:1104-1107.
Smith PM, Ferguson AV. Neurophysiology of hunger and satiety. Dev Disabil Res Rev 2008;14:96-104.
Sawchenko PE, Swanson LW. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol 1983;218:121-144.
Potter E, Sutton S, Donaldson C, Chen R et al. Distribution of corticotropin- releasing factor receptor mRNA expression in the rat brain and pituitary. Neurobiology 1994;91:8777-8781.
Arase K, York D, Shimizu H, Shargill N et al. Effects of corticotropinreleasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988;255:E255-E259.
Boler J, Enzmann F, Folkers K, Bowers CY et al. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 1969;37:705-710.
Burgus R, Dunn T, Desiderio D, Guillemin R. Molecular structure of the hypothalamic hypophysiotropic TRF factor of ovine origin: mass spectrometry demonstration of the PCA-His-Pro-NH2 sequence. C R Acad Sci Hebd Seances Acad Sci D 1969;269:226-228.
Lechan RM, Segerson TP. Pro-TRH gene expression and precursor peptides in rat brain. Observations by hybridization analysis and immunocytochemistry. Ann N Y Acad Sci 1989;553:29-59.
Lechan R.M. Update on thyrotropin-releasing hormone. Thyroid Today 1993;16:1-11.
O’Leary R, O’Connor B. Thyrotropin-releasing hormone. J Neurochem 1995;65:953-963.
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80:1523-1631.
Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett 2003;543:5-10.
Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001;81:1097-1142.
Nikrodhanond AA, Ortiga-Carvalho TM, Shibusawa N, Hashimoto K et al. Dominant role of thyrotropin-releasing hormone in the hypothalamic- pituitary-thyroid axis. J Biol Chem 2006;281:5000-5007.
Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 2007;28:97-114.
Ponce G, Charli JL, Pasten JA, Aceves C et al. Tissue-specific regulation of pyroglutamate aminopeptidase II activity by thyroid hormones. Neuroendocrinology 1988;48:211-213.
Bauer K. Adenohypophyseal degradation of thyrotropin releasing hormone regulated by thyroid hormones. Nature 1987;330:375-377.
Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulinlike growth factors in the CNS. Trends Neurosci 1988;11:107-111.
Baskin D, Breininger J, Schwartz M. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999;48:828-833.
Fekete C, Mihaly E, Luo LG, Kelly J et al. Association of cocaine- and amphetamine- regulated transcript-immunoreactive elements with thyrotropin- releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic- pituitary-thyroid axis during fasting. J Neurosci 2000;20:9224-9234.
Christoffolete MA, Ribeiro R, Singru P, Fekete C et al. Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology 2006;147:1735-1743.
Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997;138:4489-4492.
Joseph-Bravo P. Hypophysiotropic thyrotropin-releasing hormone neurons as transducers of energy homeostasis. Endocrinology 2004;145: 4813-4815.
Fekete C, Sarkar S, Rand WM, Harney JW et al. Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic- pituitary-thyroid axis. Endocrinology 2002;143:4513-4519.
Fekete C, Sarkar S, Rand WM, Harney JW et al. Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitarythyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology 2002;143:3846-3853.
Raptis S, Fekete C, Sarkar S, Rand WM et al. Cocaine- and amphetamine- regulated transcript co-contained in thyrotropin-releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus modulates TRH-induced prolactin secretion. Endocrinology 2004;145:1695-1699.
de Gortari P, González-Alzati M, Cisneros M, Joseph-Bravo P. Effect of Fasting on the Content of Thyrotropin-releasing Hormone and its mRNA in the Central Nervous System and Pyroglutamyl Peptidase II Activity in the Anterior Pituitary of Post-Weaned and Adult Rats. Nutritional Neuroscience 2000;3:255-265.
Blake NG, Eckland DJ, Foster OJ, Lightman SL. Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology 1991;129:2714-2718.
van Haasteren GA, Linkels E, Klootwijk W, van Toor H et al. Starvation- induced changes in the hypothalamic content of prothyrotrophinreleasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: role of the adrenal gland. J Endocrinol 1995;145:143-153.
van Haasteren GA, Linkels E, van Toor H, Klootwijk W et al. Effects of long-term food reduction on the hypothalamus-pituitary-thyroid axis in male and female rats. J Endocrinol 1996;150:169-178.
Vargas MA, Joseph-Bravo P, Charli JL. Thyrotropin-releasing hormone downregulates pyroglutamyl peptidase II activity in adenohypophyseal cells. Neuroendocrinology 1994;60:323-330.
Sun Y, Lu X, Gershengorn M. Thyrotropin-releasing hormone receptors - similarities and differences. J Molec Endocrinol 2003;30:97-
Vargas M, Cisneros M, Herrera J, Joseph-Bravo P et al. Regional distribution of pyroglutamyl peptidase II in rabbit brain, spinal cord, and organs. Peptides 1992;13:255-260.
Sattin A, Pekary A, Lloyd R. TRH in therapeutic vs. nontherapeutic seizures: affective and motor functions. Pharmacol Biochem Behav 1999;62:575-583.
Yamamura M, Kinoshita K, Nakagawa H, Ishida R. Pharmacological study of TA-0910, a new thyrotropin-releasing hormone (TRH) analog (II): Involvement of the DA system in the locomotor stimulating action of TA-0910. Jpn J Pharmacol 1991;55:57-68.
Ballard T, Hunter A, Bennett G. Effect of a thyrotropin-releasing hormone analogue, RX77368, on AMPA-induced septal-hippocampal lesioned rats in an operant delayed non-matching to position test. Psychopharmacology 1996;127:265-275.
Legradi G, Emerson CH, Ahima RS, Flier JS et al. Leptin prevents fasting- induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 1997;138:2569-2576.
Jaimes-Hoy L, Joseph-Bravo P, de Gortari P. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 2008;53:366-377.
de Gortari P, Mancera K, Cote-Velez A, Amaya MI et al. Involvement of CRH-R2 receptor in eating behavior and in the response of the HPT axis in rats subjected to dehydration-induced anorexia. Psychoneuroendocrinology 2009;34:259-272.
Watts AG. Dehydration-associated anorexia: development and rapid reversal. Physiol Behav 1999;65:871-878.
Watts AG, Sanchez-Watts G, Kelly AB. Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia. J Neurosci 1999;19:6111-6121.
Gutierrez-Mariscal M, de Gortari P, Lopez-Rubalcava C, Martinez A et al. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology 2008;33:198-213.
Aguilar-Valles A, Sanchez E, de Gortari P, Balderas I et al. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 2005;82:306-319.
Rolls E. The orbitofrontal cortex and reward. Cereb Cortex 2000;10:284- 294.
O’Doherty J, Rolls E, Francis S, Bowtell R et al. Representation of pleasant and aversive taste in the human brain. J Neurophysiol 2001;85:1315-1321.
Rolls E, Verhagen J, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. J Neurophysiol 2003;90:3711-3724.
Strupp B, Levitsky D. Early brain insult and cognition: a comparison of malnutrition and hypothyroidism. Dev Psychobiol 1983;16:535-549.
Rosenblum K, Berman D, Hazvi S, Lamprecht R et al. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci 1997;17:5129-5135.
Hanamori T, Kunitake T, Kato K, Kannan H. Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 1998;79:2535-2545.
Peyron C, Tighe DK, van den Pol AN, de Lecea L et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998;18:9996-10015.
Garcia-Luna C, Amaya MI, Alvarez-Salas E, de Gortari P. Preproorexin and feeding-related peptide receptor expression in dehydration- induced anorexia. Regul Pept 2010;159:54-60.
Eckert E, Pomeroy C, Raymond N, Kohler P et al. Leptin in anorexia nervosa. J Clin Endocrinol Metab 1998;83:791-795.
Aguilera G, Millan M, Hauger R, Catt K. Corticotropin-releasing factor receptors; distribution and regulation in brain, pituitary, and peripheral tissues. Ann N Y Acad Sci 1987;512:48-66.
Bale T, Contarino A, Smith G, Chan R et al. Mice deficient for corticotropin- releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000;24:410-414.
Chalmers D, Lovenberg T, DeSouza E. Localization of novel corticotropin- releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995;15:6340-6350.