2012, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2012; 33 (1)
Simuladores interactivos para estudiar las propiedades pasivas del axón y del árbol dendrítico
Reyes LA, Pérez BME, Fuchs GOL, Reyes MM
Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 29-40
Archivo PDF: 276.46 Kb.
RESUMEN
En los últimos años, los medios y herramientas interactivas, como los simuladores científicos, las simulaciones de medio ambiente o visualizaciones de datos dinámicos se han convertido en métodos establecidos en las neurociencias, las ciencias médicas, fisiológicas y biofísicas. En este artículo se presentan dos simuladores diseñados y desarrollados para el estudio de las propiedades pasivas del axón y del árbol dendrítico: HR2 y Rall1. El HR2 es un programa interactivo que reproduce los experimentos clásicos de Hodgkin y Rushton (1946) para determinar las constantes eléctricas de la fibra nerviosa de un crustáceo. Rall1 es un programa interactivo para estudiar el modelo de Rall, el cual reduce el árbol dendrítico a un cilindro equivalente eléctricamente. Con estos simuladores, los estudiantes podrán determinar la constante de tiempo y la longitud electrotónica en axones y dendritas. Los simuladores son una herramienta poderosa para explorar y analizar la complejidad de las propiedades pasivas en el procesamiento de la información neural.
REFERENCIAS (EN ESTE ARTÍCULO)
Hodgkin AL, Rushton WAH. The electrical constants of a crustacean nerve fibre. Proc Roy Soc Lond B 1946; 133(873): 444-479.
Rall W. Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology 1959; 1: 491-527.
Koch C. Biophysics of computation. Oxford University Press, New York, 1999; pp. 25-48.
Clark JW, Plonsey R. The extracellular potential fied of the single active nerve fiber in a volume conductor. Biophys J 1968; 8: 842-864.
Tuckwell HC. Introduction of theoretical neurobiology. Vol 1: Linear cable theory and dendritic structure. Cambridge University Press, 1988; pp. 124-282.
Jack JJB, Noble D, Tsien RW. Electric current flow in excitable cells. Clarendon Press, Oxford, 1975; pp. 25-82.
Davis L Jr., Lorente de No R. Contribution to the mathematical theory of the electrotonus. Stud Rockefeller Inst M Res, 1947; 131: 442-496.
Clark JW, Plonsey R. A mathematical evaluation of the core conductor model. Biophys J 1966; 6: 95-112.
Kootsey JM. The steady-state finite cable: numerical method for non-linear membrane. J Theor Biol 197; 64: 413-420.
Arthurs AM, Arthurs WM. Pointwise bounds for the solution of a nonlinear problem in cell membrane theory. Bull Math Biol 1983; 45: 155-168.
Rall W. Cable theory for dendritic neurons. In: Methods in neuronal modeling. Koch C. and Segev I, editors. MIT Press, Cambridge, 1989; pp. 9-12.
Segev I, Rinzel, J, Sheperd, GM. The theoretical foundation of dendritic function. The MIT Press, Cambridge, Massachusetts, 1995.
Johnston D, Miao-Sin Wu S. Foundations of cellular neurophysiology. The MIT Press, Cambridge, Massachusetts, 1995; pp. 55-120.
Genter LJ, Stuart GJ, Clements JD. Direct measurement of specific membrane capacitance in neurons. Biophys J 2000; 79: 314-320.
Nicholls JG, Martin RA, Wallace BG, Fuchs PA. From neuron to brain. Sunderland, Massachusetts, 2001; pp. 113-132.
Rall W. Membrane time constant of motoneurons. Science, 1957; 126:454-493.
Schierwagen AK. A non-uniform equivalent cable model of membrane voltage changes in a passive dendritic tree. J Theor Biol 1989; 141: 159-179.
Rall W. Core conductor theory and cable properties of neurons. In Handbook of physiology. Sec. 1, The nervous system, vol. 1. Bethesda, MD: Am Physiol Soc 1977; pp. 39-97.
Brown TH, Perkel DH, Norris JC, Peacock JH. Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J Neurophysiol 1981; 45(1): 1-15.
Stafstrom CE, Schwindt PC, Crill WE. Cable properties of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 1984; 52(2): 278-289.
Bargas J, Galarraga E, Aceves J. Electrotonic properties of neostriatal neurons are modulated by extracellular potassium. Exp Brain Res 1988; 72: 390-398.
Iansek R, Redman SJ. An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J Physiol 1973; 234: 613-636.
Burke RE, Fyffe REW, Moschovakis AK. Electrotonic architecture of cat gamma motoneurons. J Neurophysiol 1994, 72: 2302-2316.
Rall W. Electrophysiology of a dendritic neuron model. Biophys J 1962; 2: 145-167.
Rall W. Membrane potential transients and membrane time constant of motoneurons. Exptl Neurol 1960; 2: 503-532.
Aidley JD. The physiology of excitable cells. 4th edition, Cambridge University Press. New York, USA. 1998.
Latorre R, López-Barneo J, Bezanilla F, Llinás R. Biofísica y fisiología celular. Universidad de Sevilla, Santiago de Chile. 1986.
Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th edition, McGraw Hill, New York, 2000.
Reyes A, Galarraga E, Flores-Hernández J, Tapia D, Bargas J. Passive properties of neostriatal neurons during potassium conductance blockade. Exp Brain Res, 1998; 120(1): 70-84.
Kawato M. Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol 1984; 111: 149-169.
Holmes WR, Rall W. Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J Neurophysiol 1992; 68(4): 1421-1437.
Ohme M, Schierwagen A. An equivalent cable model for neuronal trees with active membrane. Biol Cybern 1998; 78: 227-243.
Rall W. Theoretical significance of dendritic trees for neuronal input-output relations. In Neural theory and modeling, ed. RF Reiss, Palo Alto, Stanford University Press, 1964.
Bower JM, Beeman D. The book of GENESIS. 2nd edition, Springer and Telos, New York, 1998.
Carnevale NT, Hines ML. The NEURON book. Cambridge University Press, 2005.
Hines ML. Efficient computation of branched nerve equations. Int J Biomed Comput 1984; 15: 69-76.
Cannon RC, O´Donnell C, Nolan MF. Stochastic ion channel gating in dendritic neurons: Morphology dependence and probabilistic synaptic activation of dendritic spikes. Comp Biol 2010; 6(8): 1-18.