2012, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2012; 33 (1)
Modelos asociativos para la predicción de la localización subcelular de proteínas
Acevedo-Mosqueda ME, Acevedo-Mosqueda MA, Calderón-Sambarino MJ
Idioma: Español
Referencias bibliográficas: 38
Paginas: 17-28
Archivo PDF: 316.71 Kb.
RESUMEN
La localización de las proteínas dentro de la célula es fundamental para el entendimiento de su función biológica. Las proteínas son transportadas a orgánulos y suborgánulos específicos antes de ser sintetizadas. Son parte de la actividad celular y su función es eficiente cuando se encuentran en el lugar correcto. Es por esto que la localización de genes (codificados como proteínas) dentro de la célula se vuelve una tarea importante. En este trabajo se presenta un método para realizar la localización automática de genes dentro de la célula, como caso particular, se aplicó a la base de datos GENES. La propuesta tiene un enfoque asociativo y se utiliza, en particular, el modelo de las multimemorias asociativas alfa-beta. La efectividad en la localización obtenida fue del 97.99%, lo cual significa que este método, de 748 genes, no fue capaz de localizar sólo 14 de ellos.
REFERENCIAS (EN ESTE ARTÍCULO)
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP et al. Molecular cell biology, 6th Edition, 2007: 59.
Juan EYT, Jhang JH, Li WJ. “Predicting protein subcellular localization using PsePSSM and suport vector machines”. Proceedings of the 11th Join Conference on Information Sciences, 2008: 1-6.
Sarda D, Chua GH, Li KB, Krishnan A. “pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties”. BMC Bioinformatics 2005; 6: 152.
Feng ZP, “An overview on predicting the subcellular location of a protein”. In: Silico Biology, 2002: 2.
Luger GF, Stubblefield WA. Artifical Intelligence: structures and strategies for complex problem solving. Addison-Wesley, Third-Edition, 1998: 20.
Yu-Dong C, Xiao-Jun L, Kuo-Chen C. “Artificial neural network model for predicting protein subcellular location”. Computers and Chemistry 2002; 26: 179-182.
Yu CS, Chen YC, Lu CH, Hwang JK. “Prediction of protein subcellular localization”. Proteins 2006; 64(3): 643-651.
Nakai K, Kanehisa M. “Expert system for predicting protein localization sites in Gram negative bacteria”. Proteins 1991; 11(2): 95-110.
Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE , Simon I et al. “PSORT-B: Improving protein subcellular localization prediction for Gram negative bacteria”. Nucleic Acids Res 2003; 31(13): 3613-3617.
Yu CS, Lin CJ, Hwang JK. “Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions”. Protein Sci 2004; 13(5): 1402-1406.
Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B et al. “Predicting subcellular localization of proteins using machine-learned classifier”. Bioinformatics 2004; 20(4): 547-556.
Pierleoni A, Martelli PL, Fariselli P, Casadio R, “BaCelLo: a balanced subcellular localization predictor”. Bioinformatics 2006; 22(14): e408-e416.
Chia-Yu E, Chiu H, Lo A, Hwang JK, Sung TY, Hsu WL. “Protein subcellular localization prediction based on compartment-specific features and structure conservation”. BMC Bioinformatics 2007: 8-330.
Bing N, Yu-Huan J, Kai-Yan F, Wen-Cong L, Yu-Dong C, Guo-Zheng L. “Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins”. Mol Divers 2008; 12: 41-45.
Hayashi H, Sese J, Morishita S. Task: localization in KDD Cup 2001 report. Available: http://pages.cs.wisc.edu/~dpage/kddcup2001/
Acevedo ME. Memorias asociativas bidireccionales alfa-beta. Tesis de Doctorado. Centro de Investigación en Computación, México, 2006.
Acevedo ME, Yáñez C, López I, “Alpha-beta bidirectional associative memories: theory and applications”. Neural Processing Letters 2007; 26(1): 1-40.
Acevedo ME, Acevedo MA, Felipe F. “Classification of cancer recurrence with alpha-beta BAM”. Hindawi Publishing Corporation 2009; 2009: 1-14.
Acevedo ME, Yáñez C, Acevedo MA. “Associative models for storing and retrieving concept lattices”. Hindawi Publishing Corporation 2010; 2010: 1-26.
Argüelles A. “Redes neuronales Alfa-Beta sin pesos: teoría y factibilidad de implementación”. Tesis de Doctorado. Centro de Investigación en Computación, México, 2007.
López L, “Máquinas asociativas alfa-beta con soporte vectorial”. Tesis de Doctorado. Centro de Investigación en Computación, México, 2008.
Sánchez F. “Modelos Asociativos Alfa-Beta Difusos”. Tesis de Doctorado. Centro de Investigación en Computación, México, 2009.
López I. “Clasificador automático de alto desempeño”. Tesis de Maestría. Centro de Investigación en Computación, México, 2007.
Aldape M. “Enfoque asociativo para la selección de rasgos”. Tesis de Doctorado. Centro de Investigación en Computación, México, 2011.
Román I, “Aplicación de los modelos asociativos alfa-beta a la bioinformática”. MsD Thesis, Computing Research Center, Mexico City, Mexico, 2007.
Román I, López I, Yáñez-Márquez C. “Classifying patterns in bioinformatics databases by using alpha-beta associative memories”. Stu in Comp Int 2009; 224: 187-210.
Yáñez C. “Memorias asociativas basadas en relaciones de orden y operadores binarios”. PhD Thesis. Computing Research Center, Mexico City, Mexico, 2002.
Mano M. Diseño digital. Prentice-Hall, 2001: 16-26, 292-294.
Flores R. Memorias asociativas alfa-beta basadas en el código Johnson-Möbius modificado. MsD Thesis. Computing Research Center, Mexico City, Mexico, 2006.
Available: http://www.cs.waikato.ac.nz/ml/weka/
Reinhardt A, Hubbart T. “Using neural networks for prediction of the subcellular locations proteins”. Nucleic Acids Research 1998; 6(9): 2230-2236.
Chou KC. “Prediction of protein subcellular locations by incorporating quasy-second-order effect”. Biochemical Biophysical Res Commun 2000; 278: 477-483.
Wang J, Sung WK, Krishnan A, Li KB. “Protein subcellular localization prediction for Gram negative bacteria using aminoacid subalphabets and a combination of multiple support vector machines”. BMC Bioinformatics 2005; 6(174): 1-10.
Tamura T, Akutsu T. “Subcellular localization predictions of proteins using support vector machines with alignment of block sequences utilizing amino acid composition”. BMC Bioinformatics 2007; 8(466): 1-14.
Ogul H, Mumcuoglu EÜ. “Subcellular localization prediction with new protein encoding schemes”. IEEE/ACM Trans Comp Bio and Biol Inf 2007; 4(2): 227-232.
Jin YH, Niu B, Feng KY, Lu WC, Cai YD, Li GZ. “Predicting subcellular localization with AdaBoost Learner”. Protein Pept Lett 2008; 15(3): 286-289.
Xiao RQ, Guo YZ, Zeng YH, Tan HF, Pu XM, Li ML. “Using position specific scoring matrix and autocovariance to predict protein subnuclear localization”. J Biomedical Science and Engineering, 2009; 2: 51-56.
Chou KC, Shen HB. “Plant-mPloc: A top-down strategy to augment the power" for predicting plant protein subcellular localization”. PLoS ONE 2010; 5(6): 1-9.