2012, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2012; 17 (1)
Mecanismos fisiopatológicos involucrados en la enfermedad de Parkinson
Gómez-Chavarín M, Roldan-Roldan G, Morales-Espinosa R, Pérez-Soto G, Torner-Aguilar C
Idioma: Español
Referencias bibliográficas: 78
Paginas: 25-33
Archivo PDF: 344.45 Kb.
RESUMEN
La enfermedad de Parkinson es una condición neurológica devastadora que afecta a millones de persona en el mundo; su característica fisiopatológica es la pérdida de las neuronas dopaminérgicas en el mesencéfalo. Se han buscado las causas posibles de ésta enfermedad y se ha encontrado una diversidad que incluye mutaciones genéticas y tóxinas ambientales, pero la causa precisa que conduce a la muerte neuronal aún se desconoce. En la actualidad se han caracterizado algunos mecanismos patogénicos que son básicos para la degeneración de las células dopaminérgicas. Principalmente, la deficiencia en el almacenamientro de la dopamina en las vesículas sinápticas deriva en la generación en el citoplasma de radicales libres y especies reactivas del oxígeno, lo que parece ser el punto de inicio en el proceso de la muerte de estas neuronas, lo que eventualmente progresará a enfermedad de Parkinson. Esto parece ser la vía fisiopatológica común que subyace tanto a las formas genéticas como esporádicas de esta enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Aminoff MJ. Enfermedad de Parkinson y otros trastornos piramidales. Principios de Medicina Interna. ed. Mc Graw Hill Interamericana. México 1998.
Sherer TB, Betarbet R, Greenamyre JT. Pathogenesis of Parkinson’s disease. Curr Opin Invest Drugs 2001:2,657-62.
Duda JE, Giasson BI, Mabon ME, Lee VM, Trojanowski JQ. Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 2002;52, 205-10.
Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6- hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994;59:401-15.
Leroy E. The ubiquitin pathway in Parkinson’s disease. Nature 1998;395:451-2.
Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymaticactivities that affect á-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002;111,209-18.
Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 1978; 14:633-43.
Maker HS, Weiss C, Silides DJ, Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 1981;36:589-93.
Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992;59,1609-23.
Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273, 59-63.
Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1998;13(Suppl. 1):24-34.
Sofic E. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74,199-205.
Saggu H. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 1989;53,692-7.
Dexter DT. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989;52,381-9.
Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998;70, 2682-75.
Alam ZI. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997;69,1196-203.
Dexter DT. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989;52,1830-6.
Alam ZI. A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 1997;69,1326-9.
Schul JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000;267,4904-11.
Marttila RJ, Lorentz H, Rinne UK. Oxygen toxicity protecting enzymes in Parkinson’s disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci 1988;86,321-31.
Dexter DT. Nigral dopaminergic cell loss in vitamin E deficient rats. Neuroreport 1994;5,1773-6.
Przedborskin S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998;13 (Suppl. 1), 35-8.
Del Zompo M, Piccardi MP, Ruiu S, Corsini GU, Vaccari A. Highaffinity binding of [3H]1-methyl-4-phenyl- 2,3-dihydropyridinium ion to mouse striatal membranes: putative vesicular location. Eur J Pharmacol 1991;202,293-4.
Krueger MJ, Singer TP, Casida JE, Ramsay RR. Evidence that the blockade of mitochondrial respiration by the neurotoxin 1-methyl- 4-phenylpyridinium (MPP+) involves binding at the same site as the respiratory inhibitor, rotenone. Biochem Biophys Res Commun 1990;169,123-8.
Jones SR, GainetdinovRR, Wightman RM, Caron, MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 1998;18, 1979-86.
Sulzer D. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reversemtransport. J Neurosci 1995;15, 4102-8.
Sonsalla PK, Jochnowitz ND, Zeevalk GD, Oostveen JA, Hall ED. Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res 1996;738, 172-5.
Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW. Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 1985:233,539-44.
Betarbet R. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 2000;3,1301-6.
Gomez-Chavarin M, Torner C, Díaz-Pérez R, Morales-Espinosa R, Giordano M, Fernandez-Ruiz J, et al. Perinatal exposure to rotenone diminishes dopaminergic neurons and increases asynuclein content in the nigrostriatal pathway (En prensa).
Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y. Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol 1993:45, 345-9.
McCormack, AL. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002;10,119-27.
Goedert M. α-Synuclein and neurodegenerative diseases. Nature Rev Neurosci. 2001;2, 492-501.
Spillantini MG. α-Synuclein in Lewy bodies. Nature 1997;388, 839-40.
Polymeropoulos MH. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997;276,2045-47.
Krüger R. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genet 1998;18,106-8.
Kitada T. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392, 605-8.
Giasson BI, Lee VM. Parkin and the molecular pathways of Parkinson’s disease. Neuron 2001;31,885-8.
Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol (Berl) 1988;75,345-53.
Ii K, Ito H, Tanaka K, Hirano A. Immunocytochemical colocalization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J Neuropathol Exp Neurol 1997;56,125-31.
Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002;295,865-8.
Galvin JE. Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 1997;42,595-603.
Conway KA, Harper JD, Lansbury PT. Fibrils former in vitro from ásynuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 2000;39,2552-63.
Bucciantini M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416, 507-9.
Goldberg MS, Lansbury PT. Jr. Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nature Cell Biol 2002;2,E115-E119.
Lee HJ, Lee SJ. Characterization of cytoplasmic á-synuclein aggregates: fibril formation is tightly linked to the inclusion forming process in cells. J Biol Chem. 2002;277(50):48976-83
Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ. Golgi fragmentation occurs in the cells with prefibrillar á-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 2002;277(50):48984-92.
Tompkins MM, Hill WD. Contribution of soma Lewy bodies to neuronal death. Brain Res 1997;775, 24-9.
Hurtig, HI. α-Synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 2000;54,1916-21.
Shtilerman MD, Ding, TT, Lansbury PT. Jr. Molecular crowding accelerates fibrillization of á-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 2002;41:3855-60.
Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr Kinetic stabilization of the alpha-synuclein protofibril by a dopaminealpha- synuclein adduct. Science 2001;294(5545):1346-9.
Volles MJ, Lasbury PT Jr. Vesicle permeabilization by protoffibrillar a-synuclein is sensitive to Parkinson´s disease-linked mutation and occurs by a pore-like mechanism. Biochemistry 2002;41: 4595-602.
Volles MJ. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 2001;40:7812-9.
Lashuel H. α-Synuclein, especially the Parkinson’s diseaseassociated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 2002;322:1089.
Hashimoto M. Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. Neuroreport 1999;10:717-21.
Sherman MY, Goldberg AL. Involvement of molecular chaperones in intracellular protein breakdown. EXS. 1996;77: 57-78.
Shimura H. Parkinson disease gene product, parkin, is a ubiquitinprotein ligase. Nature Genet 2000;25:302-5.
West AB. Functional association of the parkin gene promoter with idiopathic Parkinson’s disease. Hum Mol Genet 2002;11: 2787-92.
Farrer M. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001;50:293-300.
Chung KK. Parkin ubiquitinates the α-synuclein interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nature Med 2001;7:1144-50.
Ribeiro CS, Carneiro K, Ross CA, Menezes JR, EngelenderS. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by á synuclein. J Biol Chem 2002;277:23927-33.
Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitinproteasome system by protein aggregation. Science 2001; 292:1552-5.
Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A. 2000;97(24):13354-9.
McNaught K St P, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 2001;297: 191-4.
Furukawa Y. Brain proteasomal function in sporadic Parkinson’s disease and related disorders. Ann Neurol 2002;51:779-82.
Rideout HJ, Larsen KE, Sulzer D, Stefanis L. Proteasomal inhibition leads to formation of ubiquitin/α-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 2001;78:899-908.
McNaught KS. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 2002;81:301-6.
McNaught KS. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 2002;13:1437-41.
McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S proteasome α-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 2002;326:155-8.
Jo E, McLaurin JA, Yip CM, St George-Hyslop PH, Fraser P. α- Synuclein membrane interactions and lipid specificity. J Biol Chem 2000;275:34328-34.
Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of α- synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998;273:9443-9.
Jensen PH, Nielsen MH, Jakes R, Dotti CG, Goedert M. Binding of α-synuclein to rat brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 1998;273:26292-4.
Jenco JM, Rawlingson A, Daniels B, Morris AJ. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by α- and α-synuclein. Biochemistry 1998;37:4901-9.
Cockcroft S. Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 2001;58:1674-87.
Liscovitch, M, Czarny, M, Fiucci, G. & Tang, X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 2000;345:401-15.
Lotharius J, Brundin P. Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 2000;11:2395-407.
Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and á-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 000;220:3214-2310.
Stein TD, Johnson JA. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 2002;22(17):7380-8.