2012, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2012; 17 (1)
Modelo PTZ: un screening primario para el desarrollo de nuevas moléculas con actividad anticonvulsivante
Ramos-Morales FR, Correa-Basurto J, Saavedra-Vélez M, Acosta-Hernández ME, Gasca-Pérez E, Pérez-Palacios A, Trujillo-Ferrara J
Idioma: Español
Referencias bibliográficas: 39
Paginas: 45-48
Archivo PDF: 253.70 Kb.
RESUMEN
La epilepsia es una enfermedad crónica la cual se define por un conjunto de trastornos neurológicos que deja una elevada predisposición en el cerebro para generar convulsiones recurrentes. Si bien se carece de una cura para este desorden cerebral; sin embargo, para su tratamiento se emplean fármacos que inhiben los mecanismos bioquímicos que generan la sintomatología, llamados anticonvulsivantes. Lo cual destaca la necesidad del empleo de modelos animales para el estudio de esta patología, así como, el desarrollo y descubrimiento de nuevos fármacos, que aportan los conocimientos básicos para el entendimiento de los mecanismos de la enfermedad y son apropiados para el estudio de mecanismos de inducción de convulsiones. Dentro de estos modelos destaca el de inducción química por pentilentetrazol, el cual, por su bajo costo y su fácil manejo el es ampliamente utilizado en el descubrimiento y desarrollo de fármacos anticonvulsivantes.
REFERENCIAS (EN ESTE ARTÍCULO)
Agarwal NB, Agarwal NK, Sharma KK. Effect of lamotrigine, oxcarbamazepine and topiramate on cognitive functions and oxidative strees in PTZ-kindled mice. Seizure 2011 Jan 17. [Epub ahead of print].
Ammon-Treibe S, Grcksch G. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70. Naunyn-Schmiedeberg’s Arch. Pharmacol 2007;375:115-21.
Ariza S, Rincón J, Guerrero M. Efectos sobre el sistema nervioso central del extracto etanólico y fracciones de hygrophila tyttha Leonard. Rev Col. Cienc Quím Farm 2006;35(1):106-19.
Avoli M, Gloor P, Kostopoulos G, Naquet R. Generalized epilepsy. neurobiological approches. Birkhäuser Boston Inc. 1345.1990
Ben-Ari Y, Tremblay E, Richie D, Ghilini G, Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentylenetetrazole metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 1981;6,1361-91.
Browing RA. Role of the brain-stem reticular formation in tonicclonic seizures: lesion and pharmacological studies. Federation Proceedings 1985; 44, 2425-31.
Claycomb RJ, Hewett SJ, Hewet JA. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia 2011; 52(2):273-83.
Conn PN. Principios de farmacología. El manual moderno. México. Hardman JG, Limbird LE. Goodman&Gilman. Las bases farmacológicas de la terapéutica. Mc Graw-Hill. 10a. Edición. México, D.F. 2003.
Cryan JF. Automated tests for measuring the effects of antidepresants in mice. Pharmacol Biochem Behav 2004;78(2):269-74.
Dibas MI, Dillon GH. The central nervous system convulsant pentilenetetrazole stimulates gamma aminobutyric acid (GABA)- activated current picrotoxin-resistant GABA(A) receptors in HEK293 cells. Neurosci Lett 2000;285:193-6.
Engel J. Seizures and epilepsy. Davids Company, U.S.A. 1989; 3-7,71-84.
Engel J, Pedley TA. Epilepsy: a comprehensive textbook. Lippincott-Raven Publishers 1997; 1425-34. 13. Fisher, RS. Animal models of the epilepsy. Brain Res Rev 1989;14, 245-78.
Forcadas-Berdusan MI. Epilepsia, esa desconocida. Suma Neurológica 2003;2(1):5-18.
15 Gale K. Animal models of generalized convulsive seizures. Generalized Epilepsy. Neurobiological Approches. Avoli M. Gloor, P. (Eds). Birkhâuser Press, Michign, U.S.A. 1990;329-43.
Hildebrant F. Pentamethylenetetrazole (Cardiazol). Arch Exp Pathol Pharmacol 1926;116,109–10.
Hosford D; Wang Y. Utility of the lethargic (ZhAh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia 1997; 38(4):408-14.
Jarogniew J. Isobolographic characterisation of interactions among selected newer antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Naunyn-Schmiedeberg’s Arch. Pharmacol 2005;372:41-54.
Kupferberg G, Schmutz M. Screening of new compounds and the role of the pharmaceutical industry. Epilepsy: A comprehensive Textbook. Engel, J. & Pedley T. A. (Eds) Lippincott – Raven Publishers. Philadelphia. 1997;1417-34.
Löscher W. Animal models of epilepsy for the development of antiepileptic and desease – modifying. A comparison of the pharmacology of kindling and post – status epilepticus models of temporal lobe epilepsy. Epilepsy Res 2002;50, 105-23.
Luszczki J; Czuczwar S. Isobolographic characterisation of interactions among selected newer antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Naunyn-Schmiedeberg’s Arch. Pharmacol 2005;372: 41-54.
Marescaux, C; Micheletti, G. A model of chronic spontaneous petit mal–like seizures in rat: Comparison with pentylenetetrazole–induced seizures. Epilepsia 1984;25, 326-31.
Mas-Bagà, M. Farmacología básica del valproato: revisión tras 35 años de uso clínico para el tratamiento de la epilepsia. RET Revista de Toxicomanías 2006;47:11-33.
Mehla J, Reeta KH, Gupta P, Gupta. Protective effect or curcumin against seizures and congnitive impairment in an pentilenetetrazole-kindled epileptic rat model. Life Sci 2010;Nov 20;87(19-22):596-603.
Merrit HH, Putnam TJ. A new series of anticonvulsivant drugs tested by experimental animals. Arch Neurol Psychiatr. 1938;39:1003-15.
Miller, JW. Functional atomy of pentilenetetrazol and electroshock seizures in the rat brainstem. Ann Neurol 1987;22, 615-21.
Pavlova TV, Yakovlev AA, Stepanichev M. Yu, Gulyaeva NV. Pentylenetetrazol kindling in rats: is neurodegeneration associated with manifestations of convulsive activity? Neurosci Behav Physiol 2006;36:7.
Pavlova T, Stepanichev M, Gulyaeva N. Pentylenetetrazole kindling induces neuronal cyclin B1 expression in rat hippocampus. Neuroscience Letters 2006;392 154–8.
Pitkänen A, Schwartzkroin PA, Moshé SL. Models of seizures and epilepsy. Elsevier Academic Press 2006;1-15.
Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J. Epileptogenesis in experimental models. Epilepsia 2007;48 Suppl 2:13-20.
Ramanjaneyulu R, Ticku M. Interactions of pentilenetetrazol and tetrazole analogues with picrotoxin site of the benzodiazepine - GABA receptor – ionophore complex. Eur J Pharmacol 1984;98, 337-45.
Rubio–Donnadieu F, Reséndiz-Aparicio JC. Lineamientos para el tratamiento de la epilepsia. Programa prioritario de epilepsia. México. 2001.
Sarkisian, MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy & Behavior 2001;2, 201-16.
Schmidt D, Lôscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 2005;46, 858-77.
Snead, O. Absence epilepsy: advances in experimental animal model. Adv. Neurol 1999;79, 253-78.
Solis H. Participación de la inhibición recurrente en algunos modelos de convulsiones generalizadas. Epilepsia: aspectos neurobiológicos, médicos y sociales. Feria, V. A. (Eds). Instituto Nacional de Neurología y Neurocirugía 1997; 66-84.
Speakmann EJ. Mechanisms urderlaying generalized tonic-clonic seizures in rat: Functional Significance of calcium ions. Generalized epilepsy. Neurobiological Approaches. Avoli, M. (Eds). Birkhâuser Boston Inc Press, Michigan, U.S.A. 1990;329-43.
Uldall P, Alving J, Hansen LK. The misdiagnosis of epilepsy in children admitted to a tertiary epilepsy centre with paroxysmal events. Arch Dis Child 2006;91:219-21.
Xiaoqiong Ma, Guangyi Liu, Shuang Wang, Zhong Chenc. Evaluation of sphingolipids changes in brain tissues of rats with pentylenetetrazol-induced kindled seizures using MALDI-TOF-MS. Journal of Chromatography B 2007; 859 170-7.
Yonekawa WD. Relation between pentilenetetrazole–induced seizures and brain pentilenetetrazol levels in mice. J Pharmacol Exp Ther 1980;214,589-3.