2011, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2011; 14 (1)
Actividad fermentativa de Saccharomycodes Ludwigii y evaluación de la síntesis de compuestos de importancia sensorial durante la fermentación de jugo de manzana
Estela-Escalante W, Rychtera M, Melzoch K, Hatta-Sakoda B, Ludeña-Cervantes Z, Sarmiento-Casavilca V, Chaquilla-Quilca G
Idioma: Español
Referencias bibliográficas: 100
Paginas: 12-23
Archivo PDF: 170.30 Kb.
RESUMEN
Se ha estudiado la actividad fermentativa de
Saccharomycodes ludwigii RIVE 16-1-5 con la finalidad de evaluar
su importancia en los procesos fermentativos. Los resultados mostraron que fermenta bien monosacáridos y
además sucrosa y maltosa. Su actividad fermentativa no es inhibida a concentraciones de hasta 200 mg/L de
metabisulfito de sodio en el medio. Además, produce etanol hasta 6.88±0,1% v/v. La agitación del medio de
cultivo incrementa la producción de alcoholes superiores (843.7 mg/L) y por el contrario disminuye la
producción de glicerol (0.18±0.2g/L) y ácido acético (56.0±8.5 mg/L). La producción de etil acetato en cultivo
agitado (130.0±8.0mg/L) fue mayor que en cultivo estático (sin agitación). Durante el cultivo batch en
biorreactor a condiciones aireadas la tasa de crecimiento μ alcanzó el valor de 0.11 h
-1. La concentración de
oxígeno en el medio afectaría su metabolismo, así cantidades insuficientes de oxígeno provocan un
metabolismo respirofermentativo con la producción de etanol, alcoholes superiores, ésteres y ácido acético. El
control de la aireación durante la fermentación es una herramienta importante para controlar el balance entre
la actividad respiratoria y fermentativa. Finalmente, los mejores resultados en calidad sensorial en lo referente
al aroma, sabor y olor se obtuvieron en cultivo estático.
REFERENCIAS (EN ESTE ARTÍCULO)
Thomas, D.S. Yeasts as spoilage organisms in beverages. In: The Yeasts, Vol. 5 (eds. Rose, A. H. & Harrison, J. S.) 517-561 (Academic Press, New York, 1993).
Beech, F.W. Yeasts in cider-making. In: The Yeasts, Vol. 5. (eds. Rose, A. H. & Harrison, J. S.) 169-213 (Academic Press, New York, 1993).
Combina, M., et al. Yeasts associated to Malbec grape berries from Mendoza, Argentina. Journal of Applied Microbiology 98, 1055-1061 (2005).
Polsinelli, M., Romano, P., Suzzi, G. & Mortimer, R. Multiple strains of Saccharomyces cerevisiae on a single grape vine. Letters in Applied Microbioliology 22, 1-5 (1996).
Jolly, N.P., Augustyn, O.P.H. & Pretorius, I.S. The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture 27(1), 15-39 (2006).
Fleet, G.H. & Heard, G.M. Yeasts–growth during fermentation. In: Wine Microbiology and Biotechnology (ed. Fleet, G.H.) 27– 54 (Harwood Academic Publishers, Camberwell, 1992).
Lambrechts, M.G. & Pretorius, I.S., Yeast and its importance to wine aroma–a review. South African Journal of Enology and Viticulture 21, 97-129 (2000).
Swiegers, J.H. & Pretorius, I.S., Yeast modulation of wine flavour. Advances in Applied Microbiology 57, 131-175 (2005).
Regueiro, L.A., Costas, C.L. & Rubio, J.E.L. Influence of viticultural and enological practices on the development of yeast populations during winemaking, American Journal of Enology and Viticulture 44, 405-408 (1993).
Fleet, G.H. & Heard, G.M. Yeasts–growth during fermentation. In: Wine Microbiology and Biotechnology (ed. Fleet, G.H.) 27-54 (Harwood Academic Publishers, Switzerland, 1993).
Querol, A., Jiménez, M. & Huerta, T. A study on microbiological and enological parameters during fermentation of must from poor and normal grape harvest in the region of Alicante (Spain). Journal of Food Science 55, 1603-1606 (1990).
Schutz, M. & Gafner, J. Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Letters of Applied Microbiology 19, 253-257 (1994).
Romano, P., Fiore, C., Paraggio, M., Caruso, M. & Cepece, A. Function of yeast species and strains in wine flavour. International Journal of Food Microbiology86, 169-180 (2003).
Van Urk, H., Postma, E., Scheffers, W.A. & van Dijken, J.P. Glucose transport in Crabtree-positive and Crabtree-negative yeasts. Journal of General Microbiology 135, 2399-2406 (1989).
Kruckeberg, A.L. The hexose transporter family of Saccharomyces cerevisiae. Archives of Microbiology 166, 283-292 (1996).
Flores, C.L., Rodríguez, C., Petit, T, & Gancedo, C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiology Reviews 24, 507-529 (2000).
van Dijken, J.R., Weusthuis, R.A. & Pronk, J.T. Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoek 63, 343-352 (1993).
Bisson, L.F., Yeasts metabolism of sugars. In: Wine Microbiology and Biotechnology (ed. Fleet, G.H.) 55-57 (Harwood Academic Publishers, Chur, Switzerland, 1993).
Goffrini, P., Ferrero, I. & Donnini, C. Respiration-dependent utilization of sugars in yeasts: A determinant role for sugar transporters. Journal of bacteriology 184(2), 427-432 (2002).
Entian, K.D. & Barnett, J.A. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends in Biochemical Sciences 17, 506-510 (1992).
Kresze, G.B. & Ronft, H. Pyruvate dehydrogenase complex from Baker’s yeast. 1. Properties and some kinetic and regulatory properties. European Journal of Biochemistry 119, 573-579 (1981a).
Kresze, G.B. & Ronft, H. Pyruvate dehydrogenase complex from Baker’s yeast. 2. Molecular structure, dissociation, and implications for the origin of mitochondria. European Journal of Biochemistry 119, 581-587 (1981b).
Gailiusis, J., Rinne, R.W. & Benedict, C.R. Pyruvate-oxaloacetate exchange reaction in Baker’s yeast. Biochimica et Biophysica Acta 92, 595-601 (1964).
Bulder, C.J.E.A. Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie van Leeuwenhoek 30, 1-9 (1964).
De Deken, R.H. The Crabtree effect and its relation to the petite mutation. Journal of Genetic Microbiology 44, 157-165(1966).
Middelhoven, W.J. & Kurtzman, C.P. Relation between phylogeny and physiology in some ascomycetous yeasts. Antonie van Leeuwenhoek 83, 69-74 (2003).
Nagai, S., Kane, N., Ochi, S., Kawai, K. & Yamazaki, T. Hereditary respiration deficiency in Saccharomycodes ludwigii. Antonie van Leeuwenhoek 42(4), 493-502 (1976).
Gancedo, C. & Serrano, R. Energy yielding metabolism. In: The Yeasts (eds. Rose, A.H. & Harrison, J.S) 205-259 (Academic Press, London, 1989).
Postma, E., Verduyn, C., Scheffers, W.A. & Van Dijken, J.P. Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Applied and Environmental Microbiology 55, 468-477 (1989).
Visser, W., Scheffers,W.A., Batenburg-Van Der Vegte, W.H. & Van Dijken, J.P. Oxygen requirements of yeasts. Applied and Environmental Microbiology 56(12), 785-3792 (1990).
Romano, P., Marchese, R., Laurita, C., Saleano, G. & Turbanti, L. Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World Journal of Microbiology and Biotechnology 15, 451-454 (1999).
Blomberg, A. & Alder, L. Physiology of osmotolerance in fungi. Advances in Microbial Physiology 33, 145-212 (1992).
Remize, F., Roustan, J.L. Sablayrolles, J.M., Barre, P. & Dequin, S. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in byproduct formation and to a stimulation of fermentation rate in stationary phase. Applied and Environmental Microbiology 65,143-149 (1999).
Fredlund, E., Blank, L.M., Sauer, U., Schnurer, J. & Passoth, V. Oxygen and glucose dependent regulation of central carbon metabolism in Pichia anomala. Applied and Environmental Microbiology 70, 5905-5911 (2004).
Fredlund, E., Broberg, A., Boysen, M.E., Kenne, L. & Schnurer, J. Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation. Applied Microbiology and Biotechnology 64, 403-409 (2004).
Lutstorf, U. & Megnet, R. Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 126, 933-944 (1968).
Jacobson, M. K. & Bernofsky, C. Mitochondrial acetaldehyde dehydrogenase from Saccharomyces cerevisiae. Biochimica et Biophysica Acta 350, 277-291 (1974).
Boulton, B., Singleton, V.L., Bisson, L.F. & Kunkee, R.E. Yeast and biochemistry of ethanol fermentation. In: Principles and Practices of Winemaking (eds. Boulton, B., Singleton, B.L., Bisson, L.F. & Kunkee, R.E.) 139-172 (Chapman and Hall Publishers, New York, 1996).
Van Urk, H., Voll, W.S.L., Scheffers, W.A. & van Dijken, J.P. Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Applied and Environmental Microbiology 56, 281-287 (1990).
Remize, F., Andrieu, E. & Dequin, S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: Role of the cytosolic Mg2+ and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Applied and Environmental Microbiology 66, 3151-3159 (2000).
Prior, B.A. & Hohmann, S. Glycerol production and osmoregulation. In: Yeast Sugar Metabolism (eds. Zimmermann, F.K. & Entian, K.D.) 313-337 (Technomic Publishing, Lancaster, 1997).
Sa-Correia, I. & Van Uden, N. Temperature profiles of ethanol tolerance: Effects of ethanol on the minimum and maximum temperature for growth of Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnology and Bioengineering 25, 1665-1667(1983).
Pina, C., Couto, J.A. & Hogg, T. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnology Letters 26, 1521-1527 (2004).
Ricci, M., Martini, S., Bonechi, C., Trabalzini, L., Santucci, A. & Rossi, C. Inhibition effects of ethanol on the kinetics of glucose metabolism by S. cerevisiae: NMR and modelling study. Chemical Physics Letter 387(4-6), 377-382 (2004).
D’Amore, T., Panchal, C.J., Russell, I. & Stewart, G.G. Ethanol tolerance in yeasts. Critical Reviews in Biotechnology 9, 287- 304 (1990).
Nagodawithana, T.W., Whitt, J.T. & Cutaia, A.J. Study of the feedback effect of ethanol on selected enzymes of the glycolytic pathway. Journal of the American Society of Brewing Chemist 35, 179-193 (1977).
Nagodawithana, T.W. & Steinkraus, K. Influence of the rate ethanol production and accumulation on the viability of Saccharomyces cerevisiae in rapid fermentation. Applied and Environmental Microbiology 31, 158-162 (1976).
Granchi, L., Ganucci, D., Messini, A. & Vincenzini, M. Oenological properties of Hanseniaspora osmophila and Kloeckera corticis from wines produced by spontaneous fermentations of normal and dried grapes. FEMS Yeast Research 2, 403-407 (2002).
Ciani, C. & Maccarelli, F. Oenological properties of non- Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology14, 199-203 (2002).
Beech, F.W., Burroughs, L.F., Timberlake, C.F. & Whiting, G.C. Current progress in the chemical aspects and antimicrobial effects of sulphur dioxide (SO2). Bulletin de L’O.I.V 52, 1001-1022 (1979).
Hammond, S.M. & Carr, J.G. The antimicrobial activity of SO2– with particular reference to fermented and non-fermented fruit juices. In: Inhibition and Inactivation of Vegetative Microbes (ed. Skinner, F.A. & Hugo, W.B.) 89-110 (Academic Press, London, 1976).
Jarvis, B. & Lea, A.G.H. Sulphite binding in ciders. International Journal of Foof Science and Technology 35, 113-127 (2000).
Hinze, H. & Holzer, H. Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeasts. Zeitschrift für Lebensmitteluntersuchung und Forschung A 181, 87-91 (1985).
Maier, K., Hinze, H. & Leuschel, L. Mechanism of sulfite action on the energy metabolism of Saccaromyces cerevisiae. Biochimica et Biophysica Acta 848, 120-130 (1985).
Nykanen, L. Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. American Journal of Enology and Viticulture 37, 84-96 (1986).
Berry, D.R. & Watson, D.C. Production of organoleptic compounds. In: Yeast Biotechnology (eds. Berry, D.R., Russell, I. & Stewart, G.G.) 345-368 (Allen & Unwin., London, 1987).
Torija, M.J., et al. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. International Journal of Food Microbiology 85, 127-136 (2003).
Yoshioka, H. & Hashimoto, N. Ester formation by alcohol acetyl transferase from brewer’s yeast. Agricultural and Biological Chemistry 45, 2183-2190 (1981).
Suomalainen, H. Yeast esterase and aroma esters in alcoholic beverages. Journal of the Institute of Brewing 87, 296-300 (1981).
Malcorps, P., Cheval, J.M., Jamil, S. & Dufour, J.P. A new model for the regulation of ester synthesis by alcohol acetyltransferase in Saccharomyces cerevisiae during fermentation. Journal of the American Society of Brewing Chemists 49, 47-53 (1991).
Yoshioka, K. & Hashimoto, N. Acetyl-CoA of brewer’s yeast and formation of acetate esters. Agricultural and Biological Chemistry 48, 207-209 (1984).
Mason, A.B. & Dufour, J.P. Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16(4), 1287-1298 (2000).
Ouchi, K., Yamamoto, Y., Takagishi, M. & Akiyama, H. Regulation of isoamyl alcohol formation via Ehrlich pathway in Saccharomyces cerevisiae. Journal of Fermentation Technology 58, 301-309 (1980).
Mauricio, J.C., Moreno, J., Zea, L., Ortega, J.M. & Medina, M. The effects of grape must fermentation conditions on volatile alcohols and esters. Journal of the Science of Food and Agriculture 75, 155-160 (1997).
Rapp, A. & Mandery, H. New progress in wine and wine research. Experientia 42(8), 873-884 (1987).
Ribereau-Gayon, P., Dubourdieu, D., Doneche, B. & Lonvaud, A. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of Enology. The Microbiology of Wine and Vinifications, (2nd edition) 74-77 (John Wiley and Sons, Ltd. The Atrium, Southern Gate, Chichester, England, 2006).
Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry 45, 3027-3032 (1997).
Rous, C.V., Snow, R. & Kunkee, R.E. Reduction of higher alcohols by fermentation with a leucine-auxotrophic mutant of wine yeast. Journal of the Institute of Brewing 89(4), 274-278 (1983).
Meilgaard, M., Civille, G.V. & Carr, B.T., 1999. Sensory Evaluation Techniques. Chapter III, (3rd edition) 22-35 (CRC Press, Boca Raton, New York, 1999).
Su, S.K. & Wiley, R.C. Changes in apple juice flavor compounds during processing. Journal of Food Science 63(4), 688-691 (1998).
El-Nemra, S.E., Ismaila, I.A. & Askar, A. Aroma changes in mango juice during processing and storage. Food Chemistry 30(4), 269-27 (1988).
Ortega C., López, R., Cacho, J. & Ferreira, V. Fast analysis of important wine volatile compounds: Development and validation of a new method based on gas chromatography-flame ionization detection analysis of dichloromethane micro extracts. Journal of Chromatography A 923, 205-214 (2001).
Van Hoek, P., Van Dijken, J.P. & Pronk, J.T. Effect of specific growth rate on fermentative capacity of Baker’s yeast. Applied and Environmental Microbiology 64(11), 4226-4233 (1998).
Novak, M., Strehaiano, P., Morena, M. & Goma, G. Alcoholic fermentation: On the inhibitory effect of ethanol. Biotechnology and Bioengineering 23, 201-211 (1981).
Stratford, M., Morgans, P. & Rose, A.H. Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. Journal of General Microbiology 133, 2173-2179 (1987).
Ribereau-Gayon, P., Dubourdieu, D., Doneche, B. & Lonvaud, A. The use of sulfur dioxide in must and wine treatment. In: Handbook of Enology. The Microbiology of Wine and Vinifications, (2nd edition) 193-197 (John Wiley and Sons, Ltd. The Atrium, Southern Gate, Chichester, England, 2006).
Nieuwoudt, H.H., Prior, B.A., Pretorius, I.S. & Bauer, F.F. Glycerol in South African table wines: an assessment of its relationship to wine quality. South African Journal of Enology and Viticulture 23, 22-30 (2002).
Ribereau-Gayon, J., Peynaud, E., Ribereau-Gayon, P. & Sudraud, P. Traite d’oenolgie: Sciences et techniques du vin (Paris: Dunod, 1975).
Mangas, J.J., Cabranes, C., Moreno, J. & Gomís, D.B. Influence of cider making technology on cider taste. Lebensmittel und Wissenschaft Technologie 27, 583-586 (1994).
Valero, E., Moyano, L., Millán, M.C., Medina, M. & Ortega, J.M. Higher alcohols and esters production by Saccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chemistry 78, 57-61 (2002).
Ough, C.S., Guymon, J.F. & Crowell, E.A. Formation of higher alcohols during grape juice fermentation at various temperatures. Journal of Food Science 31, 620-625 (1966).
Blanco, D., et al. Biochemical study of the ripening of cider apple varietes. Zeitschrift-fuer-Lebensmittel-Untersuchung und Forschung 194(1), 33-37 (1992).
Vidrih, R. & Hribar, J. Synthesis of higher alcohols during cider processing. Food Chemistry 67, 287-294 (1999).
Estela, W., et al. Study and analysis of metabolites of sensorial importance produced by non-Saccharomyces yeasts. In: 27th World Congress on Vine and Wine and 82nd General Assembly of the International Office of Vine and Wine-OIV (Bratislava, Slovak Republic, 24-28 June 2002).
Estela, W., Rychtera, M., Melzoch, K. & Egoavil, E. Synthesis of compounds of sensory importance by Saccharomyces and non-Saccharomyces yeast during cider fermentation. In: 6o Simposio internacional de alcoholes y levaduras (Bogotá, Colombia, 20-22 Junio 2007).
Verstrepen, K.J., et al. Flavor-active esters: Adding fruitiness to beer. Journal of Bioscience and Bioengineering 96(2), 110-118 (2003).
Suárez Valles, B., et al. Analytical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated from Asturian (Spain) apple juice. LWT-Food Science and Technology 38, 455-461 (2005).
Picinelli, A., et al. Chemical characterization of Asturian cider. Journal of Agricultural and Food Chemistry 48, 3997-4002 (2000).
Jarvis, B., Foster, M.J. & Kinsella, W.P. Factors affecting the development of cider flavour. Journal of Applied Bacteriology 79, 5S-18S (1995).
Wang, L., Xu, Y., Zhao, G. & Li, J. Rapid analysis of flavor volatiles in apple wine using Headspace Solid-Phase microextraction. Journal of the Institute of Brewing 110(1), 57-65 (2004).
Thurston, P.A., Quain, D.E. & Tuhh, R.S. Lipid metabolism and the regulation of volatile synthesis in Saccharomyces cerevisiae. Journal of the Institute of Brewing 88, 90-94 (1982).
Fujii, T., Kobayashi, O., Yoshimoto, H., Furukawa, S. & Tamai, Y. Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Applied and Environmental Microbiology 63(3), 910-915 (1997).
Saerens, S.M.G., et al. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology 74(2), 454-461 (2008).
Arikawa, Y., et al. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 87(1), 28-36 (1999).
Gupta, A. & Rao, G.A. Study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnology and Bioengineering 84(3), 351-358 (2003).
Tolosa, L., Kostov, Y., Harms, P. & Rao, G. Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnology and Bioengineering 80(5), 594-597 (2002).
Nikakhtari, H. & Hill, G. Closure effects on oxygen transfer and aerobic growth in shake flasks. Biotechnology and Bioengineering 95(1), 15-21 (2006).
Johnson, M.J. Aerobic microbial growth at low oxygen concentrations. Journal of Bacteriology 94(1), 101-108 (1976).
Rosenfeld, E. & Beauvoit, B. Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae.Yeast 20, 1115-1144 (2003).
Beeftink, H.H., Van der Heijden, R.T.J.M. & Heijnen, J.J. Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiology Letters 73(3), 203-209 (1990).