2009, Número 4
<< Anterior Siguiente >>
Rev Esp Med Quir 2009; 14 (4)
La regulación de la conducta alimentaria en un modelo experimental de anorexia
Gortari P
Idioma: Español
Referencias bibliográficas: 36
Paginas: 185-190
Archivo PDF: 224.34 Kb.
RESUMEN
La motivación por el consumo de alimentos depende de la respuesta del núcleo paraventricular del hipotálamo, que integra señales centrales y periféricas, y que regula los sistemas neuroendocrinos. En respuesta a una deficiencia en la disponibilidad de alimentos, las neuronas que sintetizan péptidos orexigénicos del hipotálamo lateral y del núcleo arqueado se activan, mientras que se inhiben las que regulan negativamente la conducta alimentaria. El núcleo arqueado y el hipotálamo lateral se comunican con el núcleo paraventricular y modifican la actividad de sus células TRHérgicas; así, la restricción de alimentos reduce la liberación de la hormona liberadora de tirotropina (TRH), se acelera el eje tiroideo y la degradación de las reservas energéticas. A pesar del estricto control de la conducta alimentaria y de la variedad de señales que participan en él, estímulos estresantes pueden alterar la respuesta de los individuos ante un equilibrio negativo de energía, lo que ocasiona un trastorno alimentario. Con un modelo de anorexia por deshidratación, es posible inducir en ratas disminución del apetito y del peso, a partir del primer día del estudio. El funcionamiento del eje tiroideo de estos animales comparado con el de otro grupo con restricción alimentaria forzada, pero con motivación por comer, muestra una activación de las neuronas hipotalámicas de TRH, exclusiva de la anorexia. Además, analizamos ciertos factores que pueden participar en la falta de adaptación del eje tiroideo de los animales deshidratados con una baja disponibilidad de alimentos y ser los responsables de la conducta de anorexia.
REFERENCIAS (EN ESTE ARTÍCULO)
Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2006;361:1187-209.
Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr 2005;135:1320-5.
Leshan RL, Bjornholm M, Munzberg H, Myers MG Jr. Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 2006;14(Suppl. 5):208S-212S.
Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2005;493:63-71.
Wynne K, Stanley S, McGowan B, Bloom S. Appetite control. J Endocrinol 2005;184:291-318.
Schwartz MW. Central nervous system regulation of food intake. Obesity (Silver Spring) 2006;14(Suppl. 1):1S-8S.
Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav 2009;97:632-8.
Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 2009;139:629-32.
De Gortari P, Joseph-Bravo P. Neuroendocrine regulation of energy homeostasis. In: Molecular endocrinology. Kerala, India: Research Signpost, 2006;pp:65-78.
Watts AG, Sanchez-Watts G, Kelly AB. Distinct patterns of neuropeptide gene expression in the lateral hypothalamic area and arcuate nucleus are associated with dehydrationinduced anorexia. J Neurosci 1999;19:6111-21.
Ballinger AB, Williams G, Corder R, El-Haj T, Farthing MJ. Role of hypothalamic neuropeptide Y and orexigenic peptides in anorexia associated with experimental colitis in the rat. Clin Sci (Lond) 2001;100:221-9.
Connan F, Campbell IC, Katzman M, Lightman SL, Treasure J. A neurodevelopmental model for anorexia nervosa. Physiol Behav 2003;79:13-24.
Becskei C, Riediger T, Hernadfalvy N, Arsenijevic D, et al. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain Behav Immun 2008;22:56-64.
Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 2006;153: 209-35.
Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998;95:15043-8.
Nikrodhanond AA, Ortiga-Carvalho TM, Shibusawa N, Hashimoto K, et al. Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J Biol Chem 2006;281:5000-7.
Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 2007;28:97-114.
Blake NG, Eckland DJ, Foster OJ, Lightman SL. Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology 1991;129:2714-8.
Lechan RM, Fekete C. Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006;27:310-25.
Fekete C, Kelly J, Mihály E, Sarkar S, et al. Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitarythyroid axis. Endocrinology 2001;142:2606-13.
Choi YH, Hartzell D, Azain MJ, Baile CA. TRH decreases food intake and increases water intake and body temperature in rats. Physiol Behav 2002;77:1-4.
Södersten P, Bergh C, Zandian M. Understanding eating disorders. Horm Behav 2006;50:572-8.
Watts AG, Salter DS, Neuner CM. Neural network interactions and ingestive behavior control during anorexia. Physiol Behav 2007;91:389-96.
Bulik CM, Reba L, Siega-Riz AM, Reichborn-Kjennerud T. Anorexia nervosa: definition, epidemiology, and cycle of risk. Int J Eat Disord 2005;37(Suppl.):S2-9; discussion S20-21.
Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K. Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry 2004;161:2215-21.
Lo Sauro C, Ravaldi C, Cabras PL, Faravelli C, Ricca V. Stress, hypothalamic-pituitary-adrenal axis and eating disorders. Neuropsychobiology 2008;57:95-115.
Markou A, Duka T, Prelevic GM. Estrogens and brain function. Hormones (Athens) 2005;4:9-17.
Lawson EA, Klibanski A. Endocrine abnormalities in anorexia nervosa. Nat Clin Pract Endocrinol Metab 2008;4:407-14.
Troisi A, Di Lorenzo G, Lega I, Tesauro M, et al. Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology 2005;81:259-66.
Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord 2003;2:53-59.
Brambilla F, Santonastaso P, Caregaro L, Favaro A. Disorders of eating behavior: correlation between hypothalamopituitary-thyroid function and psychopathological aspects. Psychoneuroendocrinology 2006;31:131-6.
Jaimes-Hoy L, Joseph-Bravo P, de Gortari P. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 2008;53:366-77.
De Gortari P, Mancera K, Cote-Velez A, Amaya MI, et al. Involvement of CRH-R2 receptor in eating behavior and in the response of the HPT axis in rats subjected to dehydration-induced anorexia. Psychoneuroendocrinology 2009;34:259-72.
Gabry KE, Chrousos GP, Rice KC, Mostafa RM, et al. Marked suppression of gastric ulcerogenesis and intestinal responses to stress by a novel class of drugs. Mol Psychiatry 2002;7:474-83.
Diano S, Naftolin F, Goglia F, Horvath TL. Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 1998;139:2879-84.
Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology 2005;146:2827-33.