2011, Número 1
<< Anterior Siguiente >>
Enf Infec Microbiol 2011; 31 (1)
Función del óxido nítrico en el Paludismo
Herrera OA
Idioma: Español
Referencias bibliográficas: 39
Paginas: 26-32
Archivo PDF: 173.26 Kb.
RESUMEN
El paludismo es una enfermedad causada por la infección del parásito del género
Plasmodium, siendo 4 las especies que causan enfermedad en el humano:
P. vivax, P. falciparum, P. ovalae, y P. malariae. Esta enfermedad es un problema muy importante de salud pública, que causa más mortalidad global que cualquier otra enfermedad parasitaria (aproximadamente 1,5 a 2,7 millones de muertes cada año). Los estudios de la infección con
Plasmodium han proporcionado importante información sobre el papel del óxido nítrico (NO) en defensa contra el parásito. El NO es una molécula que tiene una función biológica compleja, participando en diversos fenómenos, incluidos aquellos involucrados en respuesta inmune. En el desarrollo del paludismo, el NO ha mostrado tener funciones importantes y se ha propuesto como una molécula crucial en la patogénesis del paludismo, pero su mecanismo de acción durante la enfermedad es controversial. Por una parte, existen evidencias de que ayuda en la muerte del parásito, mientras que otros estudios lo involucran en la patogénesis de la enfermedad. Además, el NO también está involucrado en la respuesta inmune del mosquito Anópheles, transmisor del parásito. En el presente trabajo se presenta un panorama de la participación del NO en la respuesta inmune y patogénesis del paludismo en el humano, y de manera particular la función de esta molécula en la respuesta inmune de los mosquitos.
REFERENCIAS (EN ESTE ARTÍCULO)
WHO. World Malaria Report. 2008.
Phillips RS. “Current status of malaria and potential for control”. Clin Microbiol Rew 2001; 14(1): 208-226.
Rodríguez DJ. “Las enfermedades transmitidas por vector en México”. Rev Fac Med UNAM 2002; 45 (3): 126-141.
SSA (2009) Cuadro 7. Vigilancia Epidemiológica Semana 53.
Hoffman SL, Bancroft WH, Gottlieb M, James SL, Burroughs EC, et al. “Funding for the malaria genome sequencing project”. Nature 1997; 387: 647.
Chan AS, Rodríguez MH, Torres JA, Rodríguez MD, Villareal C. “Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico”. J Med Entomol 1994; 31: 400-403.
Winzeler EA. “Malaria research in the post-genomic era”. Nature 2008; 455: 751-756.
Miller LH, Baruc DI, Marsh K, Doumbo O. “The pathogenic basis of malaria”. Nature 2002; 415: 673-679.
Beier JC. “Malaria parasite development in mosquitoes”. Annu Rev Entomol 1998; 43: 519-543.
Shahabuddin M, Kaslow DC. “Biology of the development of Plasmodium in mosquito midgut: a molecular and cellular view”. Bulletin de l’ Institut Pasteur 1994; 92: 119.
Malaguarnera L, Musumeci S. “The immune response to Plasmodium falciparum malaria”. The Lancet Infect Diss 2002; 2: 472-478.
Rockett KA, Awburn MM, Cowden WB, Clark IA. “Killing of Plasmodium falciparum in vitro by nitric oxide derivatives”. Infect Immun 1991; 59: 3280-3283.
Hobbs MR, Udhayakumar V, Levesque MC, et al. “A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children”. Lancet 2002; 360: 1468-1475.
Boutlis CS, Weinberg JB, Baker J, et al. “Nitric oxide production and nitric oxide synthase activity in malariaexposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia”. Infect Immun 2004; 72: 6932-6938.
Anstey NM, Granger DL, Weinberg JB. “Nitrate levels in malaria”. Trans R Soc Trop Med Hyg 1997; 91: 238-240.
Favre N, et al. “Parasite killing in murine malaria does not require nitric oxide production”. Parasitology 1999; 118: 139-143.
Herrera Ortiz A, Lanz Mendoza H, Martínez Barnetche J, Hernández Martínez S, Villarreal-Treviño C, et al. “Plasmodium berghei ookinetes induce nitric oxide production in Anopheles pseudopunctipennis midguts cultured in vitro”. Insect Biochem Mol Biol 2004; 34(9): 893-901.
18 acobs P, et al. “Nitric oxide expression in the spleen, but not in the liver, correlates with resistance to bloodstage malaria in mice”. J Immunol 1995; 155: 5306-5313.
Amante, FH, Good MF. “Prolonged Th1-like response generated by a Plasmodium yoelii-specific T cell clone allows complete clearance of infection in reconstituted mice”. Parasite Immunol 1997; 19, 111-126.
Sbolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. “Nitric Oxide bioavailability in malaria”. Trends in Parasitol 2005; 21 (9): 415-422.
Nahrevanian H. “Immune effector mechanisms of the Nitric Oxide pathway in malaria: Cytotoxicity versus Cytoprotection”. The Brazilian Journal of Infectious Diseases 2006; 10 (4): 283-292.
Brunet LR. “Nitric oxide in parasitic infections”. International Immunopharmacology 2001; 1: 1457-1467.
Luckhart S, Vodovotz Y, Cui L, Rosenberg R. “The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide”. Proc Natl Acad Sci USA 1998; 95: 5700-5705.
Dimopoulos G, Seeley D, Wolf A, Kafatos FC. “Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasites life cycle”. EMBO J 1998; 17(21): 6115-6123.
Han YS, Thompson J, Kafatos FC, Barillas-Mury C. “Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes”. EMBO 2000; 19 (22): 6030-6040.
Peterson TML, Grow AJ, Luckhart S. “Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection”. Free Radical Biolgy and Medicin 2007; 42: 132-142.
Nappi AJ, Vass E, Frey F, Carton Y. “Nitric oxide involvement in Drosophila Immunity”. Nitric Oxide 2000; 4 (4): 423-430.
Foley E, O’Frell PH. “Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila”. Genes Dev 2003; 17: 115-125.
Imamura M, Yang J, Yamakawa M. “cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori”. Insect Mol Biol 2002; 11(3): 257-265.
MacMicking J, Xie QW, Nathan C. “Nitric oxide and Macrophage function”. Ann Rev Immunol 1997; 15: 323-350.
Crane BR, Arvi AS, Gachhui R, Wu C, Ghosh DK, et al. “The structure of nitric oxide synthase oxigenase domain and inhibitor complexes”. Science 1997; 278: 425-431.
Murad F. “Cellular signaling with nitric oxide and cycling GMP”. Braz J Med Biol Res 1999; 32 (11): 1317-1327.
Bogdan C, Röllinghoff M, Diefenbach A. “Reactive oxygen and reactive nitrogen intermediates en innate and specific immunity”. Curr Opin Immunol 2000; 12: 64-76.
Melkova Z, Esteban M. “Inhibition of vaccinia virus DNA replication by inducible expression of nitric oxide synthase”. J Immnunol 1995; 155: 5711-5718.
Karupiah G, Harris N. “Inhibition of viral replication by nitric oxide and its reversal ferrous sulfate and tricarboxylic acid cycle metabolites”. J Exp Med 1995; 181: 2171-2179.
Groves JT. “Peroxynitrite: reactive, invasive and enigmatic”. Curr Opin Chem Biol 1999; 3: 226-235.
Filep JG, Beauchamp M, Baron Ch, Paquette Y. “Peroxynitrite mediates IL-8 gene expression and production en lipopolysaccharide-stimulated human whole blood”. J Immunol 1998; 161: 5656-5662.
Mannick JB, Schonhoff CM. “Nitrosylation: the next phosphorylation?”. Archives of Biochemistry and Biophysics 2002; 408: 1-6.
Rivero A. “Nitric oxide: an antiparasitic molecule of invertebrates”. TRENDS in Parasitology 2006; 22 (5): 219-225.