Idioma: Español
Referencias bibliográficas: 49
Paginas: 149-161
Archivo PDF: 566.13 Kb.
RESUMEN
Introducción. Las hembras del género
Haemagogus son los vectores de los arbovirus causantes de la Fiebre Amarilla (FA) selvática y Mayaro. Sin embargo, hasta el momento son pocos los estudios de los patrones de distribución y origen de la biota, y su relación con la transmisión de FA.
Objetivo. Estimar la distribución potencial de catorce especies del género con base en modelo de nicho y establecer su relación con la transmisión de arbovirus.
Materiales y Métodos. Se construyó una base de datos de 354 registros geo-referenciados a partir de datos de museos e información bibliográfica. Fue modelada la distribución potencial en catorce especies con el algoritmo de Máxima Entropía y utilizando 20 variables ambientales y topográficas.
Resultados. Las variables ecorregiones, precipitación y temperatura permitieron predecir la distribución de las especies, mientras que la altura no parece influir en el modelo. Algunas especies mostraron distribuciones potenciales en América Central:
Haemagogus argyromeris, Hg. clarki, Hg. chalcospilans, Hg. iridicolor y Hg. lucifer. En otras especies las áreas se extendieron desde el norte América del Sur hacia México:
Hg. mesodentatus y Hg. equinus; otras especies se restringieron al norte de América del Sur:
Hg. celeste y Hg. albomaculatus, o restringidas para Ecuador:
Hg. soperi. Finalmente, con amplia distribución potencial resultaron las especies
Hg. spegazzinii, Hg. capricornii y Hg. janthinomys.
Conclusiones. De las 20 variables ambientales y topográficas, las tres señaladas predicen el modelo de distribución potencial de los vectores. La superposición de la distribución potencial con la distribución de los genotipos de FA, sugiere que la transmisión del genotipo I de FA podría asociarse con
Hg. celeste y Hg. equinus en el norte de América del sur,
Hg. capricornii en el sur y
Hg. leucocelaenus en sur de Brasil, incluyendo parte de Bolivia donde no existen registros de esta especie. Luego, el genotipo II se asocia en el modelo con
Hg. soperi, Hg. janthinomys hacia el norte de América del Sur y
Hg. spegazzinii hacia el sur del subcontinente.
REFERENCIAS (EN ESTE ARTÍCULO)
Monath T. Yellow Fever: An update. The Lancet Infectious Diseases. 2001; 1:11-20.
Barrett A, Higgs S. Yellow Fever: A disease that has yet to be conquered. Annu Rev Entomol 2006; 52: 209-29.
Liria J, Navarro JC. Clave fotografica para hembras de Haemagogus Williston 1896 (Diptera: Culicidae) de Venezuela, con nuevo registro para el pais. Bol Malariol Salud Amb 2009; 49: 283-292.
Galindo P, Carpenter SJ, Trapido H . Ecological observations of the forest mosquitoes of an endemic yellow fever area in Panama. Am J Trop Med 1951; 31:98-137.
Galindo P, Carpenter SJ, Trapido H. A contribution of ecology and biology of tree-hole breeding mosquitoes of Panama. Ann Entomol Soc Am 1955; 48:158-164.
De Rodaniche E, Galindo P, Jonhson C. Isolation of yellow fever virus from Haemagogus lucifer, H. equinus, H. spegazzinii falco, Sabethes chloropterus and Anopheles neivai captured in Panama in the fall of 1956. Am J Trop Med Hyg 1957; 6:681-685.
Galindo P, De Rodaniche E. Surveillance for sylvan yellow fever activity in Panama (1957-1961). Am J Trop Med Hyg 1964; 13:844-850.
Arnell JH. Mosquito studies (Diptera: Culicidae) XXXII. A revision of the genus Haemagogus. Contrib Amer Entomol Inst 1973; 10:1-174.
Navarro JC, Liria J, Piñango H, Barrera R. Biogeographic area relationships in Venezuela: A parsimony analysis of Culicidae-Phytotelmata distribution in national Parks. Zootaxa 2007; 1547:1-19.
Walter Reed Biosystematic Unit. Mosquito Catalog. 2001; Disponible en URL: http://mosquitocatalog.org
Foley DH, Rueda L, Wilkerson RC. Insight into Global Mosquito Biogeography from Country Species Records. J Med Entomol 2007; 44:554-567.
Foley DH, Weitzman A, Miller SE, Faran M, Rueda L, Wilkerson RC. The value of georeferenced collection records for predicting patterns of mosquito species richness and endemism in the Neotropics. Ecol Entomol 2008; 33:12-23.
Brown JH, Lomolino MK. Biogeography. 2nd Ed. Sinauer Associates. Sunderland, MA. 1998; p. 691.
Morrone JJ, Crisci J. Historical Biogeography: introduction to methods. Ann Rev Ecol Syst 1995; 26:373-401.
Crisci JV, Katinas L, Posadas P. Introducción a la teoría y practica de la Biogeografía Histórica. Sociedad Argentina de Botánica. 2000; p. 169.
Domínguez MC, Roig-Juñent S, Tassin JJ, Ocampo. FC, Flores GE. Areas of endemism of the Patagonian steppe: an approach based on insect distributional patterns using endemicity analysis. J Biog 2006; 33:1527-1537.
Liria J, Navarro JC. Áreas de endemismo en Haemagogus Williston (Diptera: Culicidae). Darwiniana 2007; 45:43-46.
Escalante T, Sanchez-Cordero G, Morrone JJ, Linaje M. Areas of endemism of Mexican terrestrial mammals: A case study using species’ ecological niche modeling, Parsimony Analysis of Endemicity and Goloboff fit. Interciencia 2007; 32:151-159.
Illoldi-Rangel P, Escalante T. De los modelos de nicho ecológico a las áreas de distribución geográfica. Biogeografia. 2008; 3:7-12 .
Peterson AT. Biogeography of diseases: a framework for analysis. Naturwissenschaften 2008; Disponible en: 10.1007/s00114-008-0352-5.
Peterson AT, Shaw J. Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Internat J Parasitol 2003; 33:919-931.
Peterson AT, Pereira AS, Fonseca De Camargo-Neves VL. Using epidemiological survey data to infer geographic distributions of leismania vector species. Rev Soc Bras Med Trop 2004; 37:10-14.
Costa J, Peterson AT, Beard CB. Ecological niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg 2002; 67:516-20.
Peterson AT, Sanchez-Cordero V, Beard CB, Ramsey JM. Ecologic niche modelling and potential reservoirs for Chagas disease, Mexico. Emerg Inf Dis 2002; 8:662-667.
Beard CB, Pye G, Steurer FJ, Rodríguez R, Camp man R, Peterson AT, et al. Chagas Disease in a Domestic Transmission Cycle in Southern Texas, USA. Emerg Inf Dis 2003; 9 103-105.
Peterson AT, Martinez-Campos C, Nakazawa Y, Meyer-Martinez E. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans Royal Soc Trop Med Hyg 2005; 99:667-655.
Moffett A, Sarkar S. Malaria in Africa: Vector Species’ Niche Models and Relative Risk Maps. PlosOne 2007; 9:1-14.
Foley DH, Rueda L, Peterson AT, Wilkerson RC. Potential Distribution of Two Species in the Medically Important Anopheles minimus Complex (Diptera: Culicidae). J Med Entomol 2008b; 45:852-860.
Larson SR, DeGroote JP, Bartholomay LC, Sugu. maran R. Ecological niche modeling of potential West Nile virus vector mosquito species in Iowa. Journal of Insect Science 2010; 10:110 Disponible en: insectscience. org/10.110
Kulkarni MA, Desrochers RE, Kerr JT. High Resolution Niche Models of Malaria Vectors in Northern Tanzania: A New Capacity to Predict Malaria Risk? 2010; PlosOne 5: e9396 Disponible en:10.1371/journal.pone.0009396
USGS. Geographic Names Information System (GNIS), United States Geological Survey, Sioux Falls, South Dakota. 2004; Disponible en: http://geonames.usgs.gov
Beaman R. Biogeomancer, University of Kansas. 2002; Disponible en: http://www.biogeomancer.org/
ESRI. ArcView® GIS 3.2a. Environmental Systems Research Institute, Inc. New York; 1999.
Phillips SJ, Dudík M, Schapire RE. A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada.
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006; 190:231-259.
Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008; 31:161-175.
Hijmans OJ, Cameron SE, Parra JL, Jones PG,. Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005; 25:1965-1978.
USGS. HYDRO 1k, elevation derivative database. United States Geological Survey, Sioux Falls, South Dakota. 2001; Disponible en: http://www.edcdaac.usgs.gov/gtopo30/hydro.
Dinerstein E, Olson DM, Graham DJ, Webster AL,. Primm SA, Bookbinder MP, et al. Ecoregions of Latin America and the Caribbean (inset map). En: A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean, The World Bank, Washington, DC; 1995.
Kumm HW,Cerqueira N. The Haemagogus mosquitoes of Brazil. Bull Ent Res 1952; 42:169-181.
Alencar J, Dos Santos Silva J, Serra-Freire N,. Guimarães A. Dispersion and ecological plasticity patterns of Haemagogus capricornii and H. janthinomys (Diptera: Culicidae) populations in different regions of Brazil. Entomol News 2009; 120: 53-60.
Kumm HW, Osorno-Mesa E, Boshell-Manrique J. Studies on mosquitoes of the Genus Haemagogus in Colombia (Diptera, Culicidae). Am J Hyg 1946; 43:13-28.
Bryant JE, Holmes EC, Barrett A. Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLoS Pathogens 2007; 3:668-673.
Yábar CV, Campos YB, Quispe KT, Carrillo CP,. Montoya YP. Análisis genético del virus Peruano de la Fiebre Amarilla. Rev Peru Med Exp y Salud Pública 2002; 18:28-34.
Vasconcelos PFC, Bryant JE, Travassos Da Rosa . APA, Tesh R, Rodríguez SG, Barrett ADT. Genetic Divergence and Dispersal of Yellow Fever Virus, Brazil. Emerg Inf Dis 2004; 10:1578-1584.
Auguste AJ, Lemey P, Pybus OG, Suchard MA,. Salas RA, Adesiyun AA, et al. Yellow fever virus maintenance in Trinidad and its dispersal throughout the Americas. J Virology. (En prensa).
Brault AC, Powers AM, Ortiz D, Estrada-Franco. JG, Navarro-Lopez R, Weaver SC. Venezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11344-11349.
Ortiz D I, Weaver S C. Susceptibility of Ochlerotatus taeniorhynchus (Diptera: Culicidae) to infection with epizootic (subtype IC) and enzootic (Subtype ID) Venezuelan equine encephalitis viruses: evidence for epizootic strain adaptation. J Med Entomol 2004; 41: 987-993.
Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. Annu Rev Entomol 2004; 49:141-174.