2010, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2010; 15 (1)
Papel de la función mitocondrial en las enfermedades neurodegenerativas
Rodríguez-Violante M, Cervantes-Arriaga A, Vargas-Cañas S, Corona T
Idioma: Español
Referencias bibliográficas: 71
Paginas: 39-46
Archivo PDF: 113.91 Kb.
RESUMEN
La mitocondria tiene la función primordial de la respiración celular. En años recientes se ha incrementado el estudio de la participación de la mitocondria en el envejecimiento y fisiopatogenia de enfermedades generándose nuevos conocimientos tanto en modelos animales como en el ser humano.
Objetivo: en esta revisión se presenta una breve descripción de la mitocondria, su DNA y su participación en el envejecimiento normal y en particular en enfermedades neurodegenerativas.
Material y métodos: a lo largo de esta revisión se cubre el papel de la función y disfunción mitocondrial en entidades neurodegenerativas diversas entre las que se incluyen enfermedades como Huntington, Parkinson, Alzheimer y esclerosis lateral amiotrófica; entre otras, haciendo hincapié en conocimientos recientes.
Conclusión: la mitocondria tiene un papel muy relevante en la fisiopatogenia de diversas enfermedades neurodegenerativas y el entendimiento de los mecanismos involucrados da la oportunidad de desarrollar nuevas estrategias de intervención terapéutica.
REFERENCIAS (EN ESTE ARTÍCULO)
Otrí-Pareja M, Jiménez-Jiménez FJ, Molina JA. Envejecimiento cerebral y mitocondrias. Rev Neurol 1998; 26 (Suppl 1): S112-7.
Langen P, Hucho F. Karl lohmann and the discovery of ATP. Angew Chem Int Ed Engl 2008;47:1824-7.
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961;191:144-8.
Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU. The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet 2007; 23:465-74.
Muratori M, Marchiani S, Criscuoli L, Fuzzi B, Tamburino L, Dabizzi S, et al. Biological meaning of ubiquitination and DNA fragmentation in human spermatozoa. Soc Reprod Fertil suppl 2007; 63:153-8.
Mizi A, Zouros E, Rodakis GC. Multiple events are responsable for an insertion in a paternally inherited mitocondrial genome of the mussel Mytilus galloprovincialis. Genetics 2006; 172:2695-8.
Chan D. Mitochondria;dynamic organelles in disease, aging and development. Cell 2006; 125: 1241-52.
Brown WM. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci 1980;77:3605-9.
Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR. A high observed substitution rate in human mitochondrial DNA control region. Nat Genetics 1997;15:363-8.
DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Eng J Med 2003; 348: 2656-68.
Morales JA, Bueno A, Marichi F, Gutierrez J. Programmed cell death (apoptosis): the regulating mechanisms of celular proliferation. Arch Neurocien (Mex) 2004; 9:85-93.
Arango MC, Llanes L, Díaz T, Faxas ME. La apoptosis: sus características y su papel en la transformación maligna de la célula. Rev Cubana Oncol 1997;13: 126-34.
Leber B, Lin J, Andrews DW. Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 2007; 12: 897-911.
Lalier L, Cartron PF, Juin P, Nedelkin S, Manon S, Bechinger B. Bax activation and mitochondria insertion during apoptosis. Apoptosis 2007; 12:887-96.
Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 2007; 179:1163-77.
Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007;12:835-40.
Lakhani SA, Masud A, Kuida K, Porter GA, Booth CJ, Mehal WZ. Casapases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science 2006; 311:847-51.
Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269-90.
Elinos-Baez CM, Maldonado V, Melendez-Zajgla J. Caspasas: moléculas inductoras de apoptosis. Gac Med Mex 2003; 139:493-9.
Jiang X, Wang X. Cytochrome c-mediated apoptosis. Annu Rev Biochem 2004; 73: 87-106.
Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 1998; 16: 395-419.
Kim R. Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 2005; 333: 336-43.
Tsujimoto Y, Shimizu S, Egucho Y, Kamiike W, Matsuda H. Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common media. Leukemia 1997; 11:380-2.
Simon HU, Haj-Yehia A, Schaffer L. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000;5:415-8.
Barja G. Free radicals and aging. Trends Neurosci 2004;27:595- 600.
Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 2006; 273:433-50.
Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83:731-801.
Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76:126-52.
Mattson MP. Excitotoxic and excitoprotective mechanisms. Neuromolecular Med 2003; 3:65-94.
Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004;27:601-6.
Atamna H. Heme, iron, and the mitochondrial decay of ageing. Ageing Res Rev 2004; 3:303-18.
Krishnan KJ, Greaves LC, Reeve AK, Turnbull D. The ageing mitochondrial disease genome. Nucleic Acids Res 2007;35:7399- 405.
Schipper HM. Brain iron deposition and the free radicalmitochondrial theory of ageing. Ageing Res Rev 2004 Jul; 3:265- 301.
Salvioli S, Bonafe M, Capri M, Monti D, Francheschi C. Mitochondria, aging and longevity-a new perspective. FEBS 2001;492:9-13.
Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, et al. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 2003; 278:52873-80.
Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, AntonssonB, et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 2005; 12:614-26.
Manfredi G, Beal MF. The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 2000; 10:462-72.
Dupuis L, González de Aguilar JJ, Oudart H, de Tapia M, Barbeito L, Loeffler JP. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegenerative Dis 2004; 1:245-54.
Vielhaber S, Kunz D, Winkler K, Weidermann FR, Kirches E,Fesitner H, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic sclerosis. Brain 2000; 123:1339-48.
Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS. J Neurochem 2002; 80:616-25.
Krasnianski A, Deschauer M, Neudecker S, Gellerich FN, Miller T, Schoser BG. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain 2005; 128: 1870-76.
Valentine JS, Doucette Peter A, Potter SZ, Copper-Zinc superoxide dismutasa and amyotrophic lateral sclarosis. Am Rev Biochem 2005; 74:563-93.
Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, et al. Familial ALS.superoxide dismutase associate with mitochondria and shift their redox potentials. PNAS 2006; 103:13860-5.
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, et al. Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 2008; 412:191-209.
Orr AL, Li S, Wang CE, Li H, Wang J, Rong J. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 2008; 28:2783-92
Ferrante RJ, Kowall NW, Cipolloni PB. Excitotoxic lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol 1993;119:46-71.
Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 2004;20:146-54
Wellington CL, Leavitt BR, Hayden MR. Huntington disease: new insights on the role of huntingtin cleavage. J Neural Trans Suppl 2000; 58:1-17
Warby SC, Doty CN, Graham RK, Carrol JB, Yang YZ, Singaraja RR, et al. Activated caspase-6and caspase-6 cleaved fragments of huntigtin specifically colocalize in the nucleus. Hum Mol Genet 2008; 17:2390-404.
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berrger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurolm 1997; 41:646-53.
Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, et al. Involvemente of mitochondrial complex II defects in neuronal death produced by N-terminus fragment pf mutated huntingtin. Mol Biol Cell 2006; 17:1652-63
Fernández HB, Baimbridge KG, Church J, Hayden MR, Raymond LA. Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington’s disease. J Neurosci 2007; 27:13614-23
Cavadini P, Gellera C, Patel PI, Isay G. Human frataxin maintains mitocondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 2000; 9:2523-30
Palau F. Friedreich’s ataxia and frataxin: molecular genetics, evolution and pathogenesis. Int J Mol Med 2001;7:581-9
Correia AR, Pastore C, Adinolfi S, Pastore A, Gomes CM. Dynamics, stability and iron-binding activity of frataxin clinical mutants. FEBS J 2008; 275:3680-90
Sheline CT, Weil L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 2006; 140: 235-46
Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, et al. Mitochondrial dysfunction, apoptotic cell death and Alzheimer’s disease. Biochem Pharmacol 2003; 66:1827-34.
Mattson MP. Pathways toward and away Alzheimer´s disease. Nature 2004; 430:631-9
Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer´s disease. Cell Calcium 2003; 34:385-97
Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005; 19:2040-1
Sompol P, Ittarat W, Tangpong J, Chen Y, Doubinskaia I, Batinichaberle I, et al. A neuronal model of Alzheimer´s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience 2008; 153:120-30.
Vanitallie TB. Parkinson’s disease: primacy of age as a risk for mitochondrial dysfunction. Metabolism 2008;57 (Suppl 2):S50-5.
Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellet L, et al. Ubiquinone (Coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 2001; 10:224-53.
Dodson MW, Guo M, Parkin DJ. Mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 2007; 17:331-7.
Gandhi S, Mugit MM, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I, et al. PINK1 protein in normal human brain and Parkinson’s disease. Brain 2006; 129:1720-31.
Plun-Favreau H, Hardy J. PINK1 in mitochondrial function. Proc Natl Acad Sci 2008; 105: 11041-2.
Abeliovich A. Parkinson’s disease: pro-survival effects of PINK1. Nature 2007; 448:759-60.
Poole AC, Thomas RE, Andrews LA, McBride HM, Withworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci 2008; 105:1638-43.
Da Costa CA. DJ-1: a newcomer in Parkinson’s disease pathology. Curr Mol Med 2007; 7:650-7.
Lev N, Roncevic D, Ickowicz D, Melamed E, Offen D. Role of DJ-1 in Parkinson’s disease. J Mol Neurosci 2006; 29:215-25.
Schapira AHV. Mitochondria in the a etiology and pathogenesis of Parkinson’s disease. Lancet Neurol 2008; 7:97-109.