2009, Número 3
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2009; 22 (3)
Galectina-1: regulador negativo de la respuesta inmune inflamatoria y posible agente terapéutico
Ortiz-Quintero B
Idioma: Español
Referencias bibliográficas: 58
Paginas: 206-216
Archivo PDF: 198.84 Kb.
RESUMEN
La respuesta inflamatoria es un proceso esencial, autolimitado y altamente regulado para la eliminación de patógenos. La falta de regulación de la respuesta inflamatoria conduce al desarrollo de condiciones patológicas tales como autoinmunidad e inflamación crónica, mientras que la carencia de una respuesta inflamatoria permite la progresión de infecciones microbianas o el desarrollo de tumores. Galectina-1 es una proteína endógena de la familia de las lectinas, con capacidad de regular la homeostasis inmunológica a través del reconocimiento de estructuras glicosiladas en la superficie de linfocitos T inmaduros y activados, induciendo la muerte celular por apoptosis. Estudios recientes indican que el tratamiento con galectina-1 induce un cambio en el balance de la respuesta inmunológica tipo TH1 hacia TH2 en diferentes modelos experimentales de autoinmunidad, inflamación crónica y cáncer. Estos hallazgos señalan la función antiinflamatoria de la galectina-1 y su uso potencial como agente antiinflamatorio en el tratamiento de enfermedades autoinmunes, rechazo a trasplante, inflamación crónica y abortos espontáneos recurrentes. La presente revisión describe el conocimiento actual acerca de la expresión y función de la galectina-1 en la homeostasis de linfocitos T, así como su papel en la regulación de la respuesta inmunológica en el tratamiento de enfermedades de origen inflamatorio en modelos experimentales.
REFERENCIAS (EN ESTE ARTÍCULO)
Sprent J, Tough DF. T cell death and memory. Science 2001;293:245-248.
Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 2002;109 Suppl:S97-S107.
Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-1462.
Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 2003;195: 158-167.
Ware CF, VanArsdale S, VanArsdale TL. Apoptosis mediated by the TNF-related cytokine and receptor families. J Cell Biochem 1996;60:47-55.
Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-776.
Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F. Introduction to galectins. Glycoconj J 2004;19:433-440.
Cooper DN. Galectinomics: finding themes in complexity. Biochim Biophys Acta 2002;1572:209-231.
Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN. Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem 2002;277:14916-14924.
Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen EN, Spencer TE. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A 2004;101:7982-7987.
Hirabayashi J, Kasai K. The family of metazoan metal-independent ß-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 1993;3:297-304.
Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature 1995;378:736-739.
Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 1997;185:1851-1858.
Hahn HP, Pang M, He J, et ál. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 2004;11:1277-1286.
Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007;109:2058-2065.
Santucci L, Fiorucci S, Rubinstein N, et ál. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003;124:1381-1394.
Toscano MA, Bianco GA, Ilarregui JM, et ál. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 2007;8:825-834.
Rubinstein N, Alvarez M, Zwirner NW, et ál. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 2004;5:241-251.
Cho M, Cummings RD. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 1995; 270:5198-5206.
López-Lucendo MF, Solís D, André S, et ál. Growth-regulatory human galectin-1: crystallographic characterization of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 2004;343:957-970.
Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 1999;163:3801-3811.
Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J Immunol 2000;165:2331-2334.
Baum LG, Pang M, Perillo NL, et ál. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 1995;181:877-887.
Galvan M, Tsuboi S, Fukuda M, Baum LG. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 2000;275: 16730-16737.
Grabie N, Delfs MW, Lim YC, Westrich JR, Luscinskas FW, Lichtman AH. Beta-galactoside alpha2,3-sialyltransferase-I gene expression during Th2 but not Th1 differentiation: implications for core2-glycan formation on cell surface proteins. Eur J Immunol 2002;32: 2766-2772.
Blaser C, Kaufmann M, Müller C, et ál. B-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 1998;28:2311-2319.
Zuñiga EI, Rabinovich GA, Iglesias MM, Gruppi A. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 2001;70:73-79.
Rabinovich GA, Iglesias MM, Modesti NM, et ál. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol 1998;160:4831-4840.
Kopcow HD, Rosetti F, Leung Y, Allan DS, Kutok JL, Strominger JL. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci U S A 2008;105:18472-18477.
Dettin L, Rubinstein N, Aoki A, Rabinovich GA, Maldonado CA. Regulated expression and ultrastructural localization of galectin-1, a proapoptotic b-galactoside-binding lectin,during spermatogenesis in rat testis. Biol Reprod 2003;68:51-59.
Ishida K, Panjwani N, Cao Z, Streilein JW. Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 2003;11:91-105.
Priatel JJ, Chui D, Hiraoka N, et ál. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 2000;12:273-283.
Baum LG, Derbin K, Perillo NL, Wu T, Pang M, Uittenbogaart C. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J Biol Chem 1996;271:10793-10799.
Piller F, Piller V, Fox RI, Fukuda M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 1988;263:15146-15150.
Rabinovich GA, Alonso CR, Sotomayor CE, Durand S, Bocco JL, Riera CM. Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ 2000;7:747-753.
Ion G, Fajka-Boja R, Kovács F, et ál. Acid sphingomyelinase-mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal 2006;18:1887-1896.
Hahn HP, Pang M, He J, et ál. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 2004;11:1277-1286.
Matarrese P, Tinari A, Mormone E, et ál. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem 2005;280: 6969-6985.
Brandt B, Büchse T, Abou-Eladab EF, et ál. Galectin-1 induced activation of the apoptotic death-receptor pathway in human Jurkat T lymphocytes. Histochem Cell Biol 2008;129:599-609.
Stowell SR, Qian Y, Karmakar S, et ál. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 2008;180: 3091-3102.
Motran CC, Molinder KM, Liu SD, Poirier F, Miceli MC. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur J Immunol 2008;38:3015-3027.
Liu SD, Whiting CC, Tomassian T, et ál. Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood 2008;112:120-130.
Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial TCR z-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 2000;165:3722-3729.
Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 1999;97:100-106.
He J, Baum LG. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest 2006;86:578-590.
Norling LV, Sampaio AL, Cooper D, Perretti M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J 2008;22:682-690.
Offner H, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, Vandenbark AA. Recombinant human b-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 1990;28:177-184.
Rabinovich GA, Daly G, Dreja H, et ál. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 1999;190:385-398.
Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 2000;31:399-406.
Santucci L, Fiorucci S, Rubinstein N, et ál. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003;124:1381-1394.
Baum LG, Blackall DP, Arias Magallano S, et ál. Amelioration of graft versus host disease by galectin-1. Clin Immunol 2003;109:295-307.
Toscano MA, Commodaro AG, Llarregui JM, et ál. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 2006;176: 6323-6332.
Perone MJ, Bertena S, Tawadrous ZS, et ál. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J Immunol 2006;177: 5278-5289.
Perone MJ, Bertera S, Shufesky WJ, et ál. Suppression of autoimmune diabetes by soluble galectin-1. J Immunol 2009;182:2641-2653.
Tsuchiyama Y, Wada J, Zhang H, et ál. Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar Kyoto rats. Kidney Int 2000;58:1941-1952.
Harjacek M, Diaz-Cano S, De Miguel M, Wolfe H, Maldonado CA, Rabinovich GA. Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J Rheumatol 2001;28:1914-1922.
Romero MD, Muiño JC, Bianco GA, et ál. Circulating anti-galectin-1 antibodies are associated with the severity of ocular disease in autoimmune and infectious uveitis. Invest Ophthalmol Vis Sci 2006;47:1550-1556.
Giordanengo L, Gea S, Barbieri G, Rabinovich GA. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this b-galactoside-binding protein in cardiac Chagas’ disease. Clin Exp Immunol 2001;124:266-273.