2008, Número 4
<< Anterior Siguiente >>
Bioquimia 2008; 33 (4)
Las vacunas génicas (ADN): ¿Pueden sustituir a las convencionales para el control de la rabia?
Aguilar-Setién A, Tesoro-Cruz E, Salas-Rojas M, Alonso-Morales R, Blanco-Favela F
Idioma: Español
Referencias bibliográficas: 27
Paginas: 147-154
Archivo PDF: 205.10 Kb.
RESUMEN
Con el objeto de probar la viabilidad de una vacuna génica (ADN desnudo) contra la rabia se construyó el plásmido vacunal (pGQH) insertando el gen que codifica para la glicoproteína de rabia (aislado HQ01-IMSS), en el vector de expresión pCI-neo. El plásmido pGQH fue multiplicado en
E. coli DH10B, purificado mediante cromatografía de intercambio aniónico. Ratones BALB/C adultos fueron vacunados por la vía intramuscular (IM) con 20 µg del plásmido pGQH y posteriormente desafiados (vía intracerebral, IC) con virus patógeno CVS (100LD50%) a los 90 días postvacunación. A partir del día 30 postvacunación, se observó una seroconversión superior a las 0.5 unidades internacionales (UI) en los ratones vacunados y éstos resistieron el desafío con virus CVS. Sin embargo, se encontró que el proceso de purificación del plásmido es laborioso y requiere de simplificación para que la vacuna génica sea competitiva. Se sugieren estrategias de simplificación.
REFERENCIAS (EN ESTE ARTÍCULO)
Tang DC, De Vit MJ, Johnston SA. Genetic immunization: a simple method for eliciting an immune response. Nature. 1992; 259: 1745-9.
Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: Protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA. 1993; 90: 11478-82.
Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Ann Rev Immunol. 1997; 15: 617-48.
Pardoll DM, Beckerleg AM. Exposing the immunology of naked DNA. Immunity. 1995; 3: 165-9.
Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol. 1997; 158: 2278-84.
Manickan E, Kanangat S, Rouse RJD, Yu Z, Rouse BT. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukocyte Biol. 1997; 61: 25-132.
Kowalczyk DW, Ertl HC. Immune responses to DNA vaccines. Cell Mol Life Sci.1999; 55: 751-70.
Pastoret PP, Brochier B, Aguilar Setién A, Blancou J. Vaccination against rabies. In: Pastoret PP, Blancou J, Vannier P, Verschueren C. [eds.], Veterinary vaccinology. Amsterdam: Elsevier; 1997. p. 616.
Secretaría de Salud. Sistema único de Información para la Vigilancia Epidemiológica, Secretaría de Salud. Disponible en: htpp://www.epi.org.mx
Aguilar-Setién A, Aguila-Tecuatl H, Tesoro-Cruz E, Ramos-Ramirez L, Kretschmer RS. Preservation of rabies RNA in brain tissue using glycerine. T Royal Soci Trop Med Hyg. 2003 ; 97: 547-9.
Chaney WG, Howard DR, Pollard JW, Sallustio S, Stanley P. High–frequency transfection of CHO cells using polybrene. Somatic Cell Molec Genet. 1986; 12: 237-44.
Bahloul C, Jacob Y, Tordo N, Perrin P. DNA-based immunization for exploring the enlargement of immunological cross-reactivity against the lyssaviruses. Vaccine. 1998; 16: 417-25.
Perrin P, Jacob Y, Aguilar-Setién A, Loza-Rubio E, Jallet C, Desmézières E, et al. Immunization of dogs with a DNA vaccine induces protection against rabies virus. Vaccine. 1999; 18: 479-86.
Perrin P, Jacob Y, Tordo N. DNA based-immunization against Lyssaviruses. Intervirology. 2000; 43: 302-11.
Ausbel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Short protocols in molecular biology, 4th ed. New York ; Johon Wiley & Sons Inc.: 1999. p. 27-9.
Bourhy H, Sureau P. Laboratory methods for rabies diagnosis. Institut Pasteur; 1999. p. 197.
Smith JS, Yager PA, Baer GA. A rapid fluorescent focus inhibition test (RFFIT) for determining rabies neutralizing antibodies. In: Meslin IX, Kaplan MM, Koprowski H. [eds]. Laboratory techniques in rabies. 4th ed. Geneva; World Health Organization; 1996. p. 181-92.
Harlow E, Lane D. Immunoblotting, In: Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York, 1988. p. 471-510.
Xiang Z, Spitalnik S, Tran M, Wunner W, Cheng J, Hertl H. Vaccination with a plasmid vector carrying the rabies virus glycoprotein induces protective immunity against rabies virus. Virology. 1994; 199: 132-40.
Rosado-Vallado M, Mut-Martin M, Garcia-Miss M del R, Dumonteil E. Aluminum phosphate potentiates the efficacy of DNA vaccines against Leishmania mexicana. Vaccine. 2005; 23: 5372-9.
Mimper RJ, Duguid JG, Anwer K, Barron MK, Nitta H, Rolland AP. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm Res. 1996; 13: 701-9.
Martin-Orozco E, Kobayashi H, Van uden J, Nguyen M-D, Kornbluth RS, Raz E. Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int Immunol. 1999; 11: 111-8.
Krieg AM. CpG DNA: a novel immunomodulator. Trends Microbiol. 1999; 7: 64-75.
Tesoro-Cruz E, Calderón-Rodríguez R, Hernández-González R, Blanco Favéla F, Aguilar Setién A. Intradermal DNA vaccination in ear pinnae is an efficient route to protect cats against rabies virus. Vet Res. 2008; 39: 16-26
Schödel F. Attenuated Salmonella as a live vector for expression of foreign antigens. Part II: Carring viral antigens. In: Levine MM, Woodrow GC, Kaper JB, Cobon GS [eds]. New generation vaccines. 2nd ed. New York: Marcel Dekker, Inc.; 1997. p. 343-9.
Schmidt T, Friehs K, Flaschel E. Rapid determination of plasmid copy number. J Biotech. 1996; 49: 219-229.
Lodmell D, Ray N, Parnell M, Ewalt R, Hanlon D, Shaddock J, et al. DNA immunization protects non-human primates against rabies virus. Nature Med. 1998; 4: 949-952.