2007, Número 3-4
<< Anterior
Microbiología 2007; 49 (3-4)
Penicillin and cephalosporin production: A historical perspective
Campos MC, Cuadra ZTE, Rodríguez EG, Fernández FJ
Idioma: Ingles.
Referencias bibliográficas: 61
Paginas: 88-98
Archivo PDF: 227.70 Kb.
RESUMEN
La historia de la antibiosis dio comienzo con las observaciones realizadas por Sanderson y Roberts acerca de la inhibición del crecimiento de bacterias por otros organismos a finales del siglo XIX. Pero, sobre todo, la investigación biomédica tuvo un gran avance en este campo durante la Segunda Guerra Mundial, después del descubrimiento de la penicilina por Fleming. El hallazgo de la cefalosporina por Brotzu, y la posterior producción masiva de estos dos tipos de compuestos, hicieron surgir una nueva era, no solamente de avances importantes en el tratamiento de las enfermedades sino también en el aprovechamiento de los seres vivos para la producción de sustancias de alta utilidad para el hombre (lo que hoy en día se conoce como biotecnología). En esta revisión se resume la evolución histórica de los conocimientos sobre penicilina y cefalosporina, desde las primeras observaciones sobre los microorganismos productores y la química de estos antibióticos hasta las modernas formas de ingeniería genética dirigidas a la creación de cepas superproductoras a nivel industrial.
REFERENCIAS (EN ESTE ARTÍCULO)
Abraham E. P. 1971. Howard Walter Florey. Baron Florey of Adelaide and Marston. 1898-1968. Bibliographical Memoirs of Fellows of the Royal Society 17:255-302.
Abraham, E. P. 1991. From penicillins to cephalosporins, pp 15-23. In H. Kleinklauf & H. von Döhren. 50 years of Penicillin Application. History and Trends. Technische Universität Berlin. PUBLIC Ltd., Czech Republic.
Abraham, E. P. & G. G. F. Newton. 1961. The structure of cephalosporin C. Biochemical Journal 79:377-393.
Arnstein, H. R. V. & D. Morris. 1960. The structure of a peptide containing ± a-aminoadipic acid, cysteine, and valine, present in the mycelium of Penicillium chrysogenum. Biochemical Journal 76:357-361.
Barber, M. S., U. Giesecke, A. Reichert & W. Minas. 2004. Industrial enzymatic production of cephalosporin-based b-lactams. Advances in Biochemical Engineering/Biotechnology 88:179-215.
Barredo, J. L., J. M. Cantoral, E. Alvarez., B. Díez & J. F. Martín. 1989. Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Molecular and General Genetics 216: 91-98.
Barredo, J L. 1990. Análisis de una región del genoma de Penicillium chrysogenum que contiene los genes pcbC y penDE. Ph. D. Dissertation. Universidad de León, España.
Brotzu, G. 1948. Ricerche su di un nuovo antibiotico. Lavori dell´Istituto d’Igiene di Cagliari pp. 4-18.
Burton, H. S & E. P. Abraham. 1951. Isolation of antibiotics from a species of Cephalosporium. Cephalosporins P1, P2, P3, P4 and P5. Biochemical Journal 50:164-174.
Bustinza, F. 1946. Los diferentes grupos vegetales en relación con la producción de antibióticos. Anales del Jardín Botánico de Madrid 6(1):95-104.
Carr, L. G, P. L. Skatrud, M. E. Scheetz 2nd, S. W. Queener & T. D. Ingolia. 1986. Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48:257-266.
Chang, L. T. & R. P. Elander. 1979. Rational selection for improved cephalosporin C productivity in strains of Acremonium chrysogenum Gams. Developments in Industrial Microbiology 20:367-379.
Clutterbuck, P. W., R. Lovell & H. Raistrick. 1932. Studies in the biochemistry of microorganisms. The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin (the antibacterial substance of Fleming). Biochemical Journal 281:1907-1918.
Demain, A. L. & R. P. Elander. 1999. The b-lactam antibiotics: Past, present and future. Antonie van Leeuwenhoek 75:5-19.
Díez, B., S. Gutiérrez, J. L. Barredo, P. van Solingen, L. H. van der Voort & J. F. Martín. 1990. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the ±a-aminoadipyl-valine synthetase and linkage to the pcbC and penDE genes. Jounal of Biological Chemistry 265:16358-16365.
Elander, R. P. 1967. Enhanced penicillin biosynthesis in mutant and recombinant strains of Penicillium chrysogenum, pp. 403-423. In H. Stübbe (Ed). Induced mutations and their utilization. Academie-Verlag, Berlin.
Elander, R. P. & H. Aoki. 1982. Chemistry and biology of b-lactam antibiotics, pp. 84-154. In R. B. Morin & M. Gorman (Eds). Vol. 3: The biology of b-lactam antibiotics. Academic Press, New York.
Elander, R. P. & M. A. Espenshade. 1976. The role of microbial genetics, pp. 192-256. In B. M. Miller & W. Litsky (Eds). Industrial Microbiology. McGraw-Hill, New York.
Elander, R. P., J. C. Corum, H. DeValeria & R. M. Wilgus. 1976. Ultraviolet mutagenesis and cephalosporin biosynthesis in strains of Cephalosporium acremonium, pp. 253-271. In K. D. MacDonald (Ed). Genetics of Industrial Microorganisms. Academic Press, New York and London.
Fawcett, P. A., J. J. Usher, J. A. Huddleston, R. C. Bleaney, J. J. Nisbet & E. P. Abraham. 1976. Synthesis of delta-(alpha-aminoadipyl)cysteinylvaline and its role in penicillin biosynthesis. Biochemical Journal 157:651-660.
Fernández, F. J. 1997. Caracterización de la expresión de los genes implicados en la biosíntesis de penicilina: Reacción enzimática catalizada por el producto del último gen (penDE) de la ruta biosintética de penicilina. Ph. D. Dissertation. Universidad de León, España.
Fernández-Cañón, J. M. & M. A. Peñalva. 1995. Overexpression of two penicillin structural genes in Aspergillus nidulans. Molecular and General Genetics 246(1):110-118.
Fierro, F., S. Gutiérrez, B. Díez & J. F. Martín. 1993. Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Molecular and General Genetics 241:573-579.
Fierro, F., J. L. Barredo, B. Díez, S. Gutiérrez, F. J. Fernández & J. F. Martín. 1995. The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 92(13):6200-6204.
Fierro, F., C. García-Estrada, N. I. Castillo, R. Rodríguez, T. Velasco-Conde & J. F. Martín. 2006. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genetics and Biology 43(9):618-629.
Fleming, A. 1929. On the bacterial action of a Penicillium, with special reference to their use in the isolation of B. influenzae. British Journal of Experimental Pathology 10:226-236.
Fleming, A. 1946. Penicillin. Its practical application. The Blakiston Company, Philadelphia. U.S.A.
Florey, H. 1945. The use of micro-organisms for therapeutic purposes. British Medical Journal 1945:635-642.
Florey, H. W., E. Chain, N. G. Heatley, M. A. Jennings, A. G. Sanders, E. P. Abraham, & M. E. Florey. 1949. Antibiotics: a survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants. Oxford University Press, London.
Florey, H. W., E. P. Abraham, G. G. F. Newton, H. S. Burton, B. K. Kelly, C. W. Hale & G. A. Miller. 1956. Improvements relating to the production of an antibiotic substance by a Cephalosporium species. British Patent 745208.
Fujisawa, Y., H. Shirafuji, M. Kida, K. Nara, M. Moneda & T. Kanzaki. 1973. New findings on cephalosporin C biosynthesis. Nature: New Biology 246:154-155.
Fujisawa, Y., H. Shirafuji, M. Kida, K. Nara, M. Moneda & T. Kanzaki. 1975. Accumulation of deacetylcephalosporin C by cephalosporin C negative mutants of Cephalosporium acremonium. Agricultural and Biological Chemistry 39:1295-1301.
Gutiérrez, S., B. Diez, E. Montenegro & J. F. Martín. 1991. Characterization of the Cephalosporium acremonium pcbAB gene encoding a-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: Linkage to the pcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. Journal of Bacteriology 173:2354-2365.
Gutiérrez, S., J. Velasco J, F. J. Fernández & J. F. Martín. 1992. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. Journal of Bacteriology 174:3056-3064.
Gutiérrez, S., J. Velasco, A. T. Marcos, F. J. Fernández, F. Fierro, J. L. Barredo, B. Díez & J. F. Martín. 1997. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum as shown by promoter replacement studies. Applied Microbiology and Biotechnology 48(5):606-614.
Hinnen, A., J. B. Hicks & G. R. Fink. 1978. Transformation of yeast. Proceedings of the National Academy of Sciences of the United States of America 75(4):1929-1933.
Hodgkin, D. C. & E. N. Maslen. 1961. The X-ray analysis of the structure of cephalosporin C. Biochemical Journal 79: 393-402.
Jayatilake, G. S., J. A. Huddleston & E. P. Abraham. 1981. Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium. Biochemical Journal 194:645-647.
Kennedy, J. & G. Turner. 1996. Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Molecular and General Genetics 253(1-2):189-197.
Knihinicki, R. D., R. O. Day & K. M. Williams. 1991. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs—II. Racemization and hydrolysis of (R)- and (S)-ibuprofen-CoA thioesters. Biochemical Pharmacolology 42(10):1905-1911.
Montenegro, E. 1996. Caracterización del gen penDE de Aspergillus nidulans y su producto génico, isopenicilina N aciltransferasa. Ph.D. Dissertation. Universidad de León, España.
Newton, G. G. F. & E. P. Abraham. 1954. Degradation, structure and some derivatives of cephalosporin N. Biochemical Journal 58:103-111.
Paracchini, R. 1992. Il signore delle cefalosporine. Ed. Demos, Cagliari, Italia.
Queener, S. W., J. McDermott & A. B. Radue. 1975. Glutamate dehydrogenase specific activity and cephalosporin C synthesis in the M8650 series of Cephalosporium acremonium mutants. Antimicrobial Agents and Chemotherapy 7(5):646-651.
Ratcliff, J. D. 1945. Yellow magic. The history of penicillin. Random House, New York.
Samson, S. M., R. Belagaje, D. T. Blankenship, J. L. Chapman, D. Perry, P. L. Skatrud, R. M. VanFrank, E. P. Abraham, J. E. Baldwin, S. W. Queener & T. D. Ingolia. 1985. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318:191-194.
Samson S. M., J. E. Dotzlaf, M. L. Slisz, G. W. Becker, R. M. Van Frank, L. E. Veal, W.-K. Yeh, J. R. Miller, S. W. Queener & T. D. Ingolia. 1987. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Technology 5:1207-1214.
Schmitt E. K., B. Hoff & U. Kuck. 2004. Regulation of cephalosporin biosynthesis. Advances in Biochemical Engineering/Biotechnology 88:1-43.
Skatrud, P. L. & S. W. Queener. 1989. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 78:331-338.
Skatrud, P. L., A. J. Tietz, T. D. Ingolia, C. A. Cantwell, D. L. Fisher, J. L. Chapman & S. W. Queener. 1989. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7:477-485.
Theilgaard, H., M. van Den Berg, C. Mulder, R. Bovenberg & J. Nielsen. 2001. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillium biosynthetic genes. Biotechnology and Bioengineering 72:379-388.
Thom, C. 1930. The Penicillia. Williams & Wilkins, Baltimore, U.S.A.
Trilli, A. V., V. Mantovani & S. J. Pirt. 1978. Development of the agar disk method for the rapid selection of cephalosporin producers with improved yields. Antimicrobial Agents and Chemotherapy 13:7-13.
Tyndall, J. 1876. The optical deportment of the atmosphere in relation to the phenomena of putrefaction and infection. Philosophical Transactions of the Royal Society of London 166:27-74.
Ullán, R. V., J. Casqueiro, O. Bañuelos, F. J. Fernández, S. Gutiérrez & J. F. Martín. 2002a. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. Journal of Biological Chemistry 277(48):46216-46225.
Ullán, R. V., G. Liu, J. Casqueiro, S. Gutiérrez, O. Bañuelos & J. F. Martín. 2002b. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Molecular Genetics and Genomics 267:673-683.
Veenstra, A. E., P. van Solingen, R. A. Bovenberg & L. H. van der Voort. 1991. Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. Journal of Biotechnology 17:81-90.
Velasco, J., J. L. Adrio, M. A. Moreno, B. Díez, G. Soler & J. L. Barredo. 2000. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnology 18:857-861.
Vialta, A., C. Ferreira Catani, R. Bonatelli Jr & J. L. Azevedo. 1997. Cephalosporin C production and genetic improvement of the fungus Acremonium chrysogenum based on morphological mutant isolation. Brazilian Journal of Genetics 20(2):165-170.
Wainwright, M. & H. T. Swan. 1986. C. G. Paine and the earliest surviving clinical records of penicillin therapy. Medical History 30:42-56.
Waksman, S. 1941. Antagonistic relations of microorganisms. Bacteriological Reviews 5(3):231-291.