2007, Número 3-4
<< Anterior Siguiente >>
Microbiología 2007; 49 (3-4)
Glicobiología del virus de la influenza A
Florres-Munguía ME, Vázquez-Moreno L, Ramos-Clamont Montfort G
Idioma: Español
Referencias bibliográficas: 120
Paginas: 74-87
Archivo PDF: 2721.39 Kb.
RESUMEN
El reconocimiento específico de las hemaglutininas (HA) del virus de la influenza A hacia los carbohidratos de las células de los vertebrados, es la señal que permite al virus unirse a la célula para replicarse e infectar al huésped y también para perpetuarse, estableciendo reservorios naturales en diferentes especies. Las HA de los virus que atacan a aves, reconocen sialiloligosacáridos con ácidos siálicos unidos a galactosa en la posición α 2-3. Esto les permite replicarse en células intestinales produciendo una infección entérica que se disemina a través de las heces. Para cruzar la barrera de las especies y atacar al humano, la especificidad de la HA cambia, reconociendo ahora estructuras con ácidos siálicos en posición α 2-6. Esta permuta, aparentemente sencilla, provoca que el virus se replique en las células del sistema respiratorio humano. Las alteraciones en la especificidad de la HA se favorecen por diversos mecanismos de variación genética debidos a la naturaleza segmentada del ARN del virus. Estos mecanismos requirieron además de un intermediario, el cerdo, cuyo sistema respiratorio presenta tanto estructuras sialiladas en α 2-3 como en α 2-6 y por tanto es susceptible a virus que atacan a aves y humanos. El virus aviar se adapta en el cerdo para poder atacar al humano y esta adaptación se favorece en situaciones de co-infección. Sin embargo, actualmente existen cepas que son capaces de transmitirse directamente del ave al humano sin necesidad de un intermediario. Estas cepas han acumulado y siguen adquiriendo variaciones en su información genética que las capacitan para poder desencadenar una nueva pandemia de influenza.
REFERENCIAS (EN ESTE ARTÍCULO)
Abe, Y., E. Takashita, K. Sugawara, Y. Matsuzaki, Y. Muraki, & S. Hongo. 2004. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J. Virol. 78:9605–9611.
Air, G.M., & W.G. Laver. 1989. The neuraminidase of influenza virus. Proteins. 6: 341–356.
Alvarado de la Barrera, C., & G. Reyes-Terán. 2005. Influenza: Forecast for a Pandemic. Arch. Med. Res. 36:628–636.
Baigent, S.J., & J.W. McCauley. 2003. Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. BioEssays. 25:657–671.
Black, R.A., P.A. Rota, N. Gorodkova, H.D. Klenk, & A.P. Kendal.1993. Antibody response to the M2 protein of inXuenza A virus expressed in insect cells. J Gen. Virol. 74:143–146.
Brown, I.H. 2001.The pigs as an intermediate host for influenza A viruses between birds and humans. Int. Congress Series. 1219:173–178.
Capua, I., & D.J. Alexander. 2002. Avian influenza and human health. Acta Tropica 83:1–6.
Chen, J., H.L. Lee, D.A. Steinhauer, D.J. Stevens, J.J. Skehel & D.C. Wiley. 1998. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417.
Choi, S.K., M. Mammen, & G.M. Whitesides. 1997. Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J. Am. Chem. Soc. 119:4103–4111.
Cinatl, J. Jr., M. Michaelis, & H.M. Doerr. 2007. The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med. Microbiol. Immunol. 196:213–225.
Claas, E.C., A.D. Osterhaus, R. van Beek, J.C. de Jong, G.F. Rimmelzwaan, D.A. Senne, S. Krauss, K.F. Shortridge, & R.G. Webster. 1998. Human influenza A (H5N1) virus related to highly pathogenic avian influenza virus. Lancet 351:472–477.
Claas, E.C.J., Y. Kawaoka, J.C. de Jong, N. Masurel, & R.G. Webster. 1994. Infection of children with avian–human reasserting influenza virus from pigs in Europe. Virology 204:453–457.
Compans, R.W., N.J. Dimmock, & H. Meier-Ewert. 1969. Effect of antibody to neuraminidase on the maturation and hemagglutinating activity of an influenza A2 virus. J. Virol. 4:528–534.
Connor, R.J., Y. Kawaoka, R.G. Webster, & J.C. Paulson. 1994. Receptor specificity in human, avian and equine H2 and H3 influenza virus isolates. Virology 205:17–23.
Cox, N. J., & K. Subbarao. 1999. Influenza. Lancet 354: 1277-1282.
Cox, N.J., & K. Subbarao. 2000. Global epidemiology of influenza: Past and present. Annu. Rev. Med. 51:407-421.
Cox, N.J., T.L. Brammer, & H.L. Regnery. 1994. Influenza: global surveillance for epidemic and pandemic variants. Eur. J. Epidemiol. 10:467–470.
Daniels, R., B. Kurowski, A.E. Johnson, & D.N. Hebert. 2003. N -linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell 11:79–90.
De Jong, J.C. 1997. A pandemic warning. Nature 389:554.
Deshpande, K.L., V.A. Fried, M. Ando, & R.G. Webster.1987. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. USA. 84: 36–40.
Ellis, S.E., C.S. Coffey, E.F. Mitchel, R.S. Dittus, & M.R. Griffin. 2003. Influenza and respiratory syncytial virus-associated morbidity and mortality in the nursing home population. J. Am. Geriatr. Soc. 51(6):761-767.
Fiszon, B., C. Hannoun, A. Garcia-Sastre, E. Villar, & J.A. Cabezas. 1989. Comparison of biological and physical properties of human and animal A(H1N1) influenza viruses. Res. Virol. 140:395–404.
Fouchier, R.A., P.M. Schneeberger, F.W. Rozendaal, J.M. Broekman, S.A. Kemink, V. Munster, T. Kuiken, G.F. Rimmelzwaan, M. Schutten, G.J. van Doornum, G. Koch, A. Bosman, M. Koopmans, & A.D. Osterhaus. 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA. 101(5):1356-1361.
Frost, W.H. 1919. The epidemiology of influenza. JAMA 73:313–318.
Gambaryan, A.S., A.B. Tuzikov, V.E. Piskarev, S.S. Yamnikova, D. Lvov, J.S. Robertson, N.V. Bovin, & M.N. Matrosovich. 1997. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl (N-acetyllactosamine). Virology 232:345–350.
Gambaryan, A.S., S. Yamnikova, D. Lvov, A. Tuzikov, A. Chinarev, G. Pazynina, R. Webster, M. Matrosovich, & N. Bovin. 2005. Receptor specificity of influenza viruses from birds and mammals: New data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276–283.
Gambaryan, A.S., V.E. Piskarev, I.A. Yamskov, A.M. Sakharov, A.B. Tuzikov, N.V. Bovin, N.E. Nifantev, & M.N. Matrosovich. 1995. Human influenza virus recognition of oligosaccharides. FEBS Lett. 366:57–60.
Glaser, L., J. Stevens, D. Zamarin, I. A. Wilson, A. Garcia-Sastre, T. M. Tumpey, C. F. Basler, J. K. Taubenberger, & P. Palese.2005. A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity. J. Virol. 79:11533-11536
Glezen, W.P. 1996. Emerging infections: pandemic influenza. Epidemiol. Rev. 18:64–76.
Glezen, W.P., & R.B. Couch. 1978. Interpandemic influenza in the Houston area, 1974–76. N. Engl. J. Med. 298:587–592.
Griffin, J.A., S. Basak, & R.W. Compans. 1983. Effects of hexose starvation and the role of sialic acid in influenza virus release. Virology 125:324–334.
Guan, Y., J.S. Peiris, A.S. Lipatov, T.M. Ellis, K.C. Dyrting, S. Krauss, L.J. Zhang, R.G. Webster, & K.F. Shortridge. 2002. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc. Natl. Acad. Sci. USA. 99:8950-8955.
Hatta, M., P. Gao, P. Halfmann, & Y. Kawaoka. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1773–1775.
Hayden, F.G. 1996. Amantadine and rimantadine, clinical aspects, pp 59-77. In: D. D. Richman (Ed). Antiviral Drug Resistance. John Wiley & Sons Ltd, Chichester, UK,
Helenius, A. & M. Aebi. 2001. Intracellular functions of N-Linked glycans. Science 291:2364-2369.
Hinshaw, V.S., R.G. Webster, C.W. Naeve, & B.R. Murphy. 1983. Altered tissue tropism of human-avian reassortant influenza viruses. Virology. 128:260–263.
Hirst, M., C.R. Astell, M. Griffith, S.M. Coughlin, M. Moksa, T. Zeng, D.E. Smailus, R.A. Holt, S. Jones, M.A. Marra, M. Petric, M. Krajden, D. Lawrence, A. Mak, R. Chow, D.M. Skowronski, A. Tweed, S. Goh, R.C. Brunham, J. Robinson, V. Bowes, K. Sojonky, S.K. Byrne, & M. Paetzel. 2004. A novel avian influenza H7N3 strain associated with an avian influenza outbreak in British Columbia. Emerg. Infect. Dis. 10:2192-2195.
Horimoto T, & Y. Kawaoka. 2006. Strategies for developing vaccines against H5N1 influenza A viruses. Trends. Mol. Med. 12:506–514.
Inkster, M. D., A.S. Hinshaw, & I.T. Schulze. 1993. The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. J. Virol. 67:7436-7443.
Ito, T., & Y. Kawaoka. 2000. Host-range barrier of influenza A viruses. Vet. Microbiol. 74:71–75.
Itoh, M., P. Hetterich, R. Isecke, R. Brossmer, & H.D. Klenk. 1995. Suppression of influenza virus infection by an N-thioacetylneuraminic acid acrylamide copolymer resistant to neuraminidase. Virology. 212:340–347.
Kawaoka, Y., S.S. Krauss, & R.G. Webster. 1989. Avian-to human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63: 4603-4608.
Kido, H., Y. Yokogoshi, K. Sakai, M. Tashiro, Y. Kishino, A. Fukutomi, & N. Katunuma. 1992. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J. Biol. Chem. 267:13573–13579.
Klenk, H.D., R. Wagner, D. Heuer, & T. Wolff. 2002. Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res. 82:73–75.
Kobasa, D., K. Wells, & Y. Kawaoka. 2001. Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine. J. Virol. 75:11773–11780.
Koopmans, M., B. Wilbrink, M. Conyn, G. Natrop, H. van der Nat, H. Vennema, A. Meijer, J. van Steenbergen, R. Fouchier, A. Osterhaus, & A. Bosman. 2004. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363(9409):587-593.
Kurtz, J., R.J. Manvell, & J. Banks. 1996. Avian influenza virus isolated from a woman with conjunctivitis. Lancet 348:901–902.
Land, A. & I. Braakman. 2001. Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie 83:783–790.
Lentz, M. R., R. G. Webster, & G. M. Air. 1987. Site-directed mutation of the active site of influenza neuraminidase and implication for catalytic mechanism. Biochemistry 26:5351-5358.
Li, K.S., Y. Guan, J. Wang, G.J. Smith, K.M. Xu, L. Duan, A.P. Rahardjo, P. Puthavathana, C. Buranathai, T.D. Nguyen, A.T. Estoepangestie, A. Chaisingh, P. Auewarakul, H.T. Long, N.T. Hanh, R.J. Webby, L.L. Poon, H. Chen, K.F. Shortridge, K.Y. Yuen, R.G. Webster, & J.S. Peiris. 2004. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209-213.
Li, S., J. Schulman, S. Itamuraj, & P. Palese. 1993. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J. Virol. 67:6667-6673.
Lin, Y.P., M. Shaw, V. Gregory, K. Cameron, W. Lim, A. Klimov, K. Subbarao, Y. Guan, S. Krauss, K. Shortridge, R. Webster, N. Cox, & A. Hay. 2000. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. USA. 97:9654-9658.
Liu, C., M.C. Eichelberger, R.W. Compans, & G.M. Air. 1995. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol. 69:1099–1106.
Liu, M., S. He, D. Walker, N. Zhou, D.R. Perez, B. Mo, F. Li, X. Huang, R.G. Webster, & R.J. Webby. 2003. The influenza virus gene pool in a poultry market in South Central China. Virology 305:267-275.
Maines, T. R., X. H. Lu, S. M. Erb, L. Edwards, J. Guarner, P.W. Greer, D.C. Nguyen, K.J. Szretter, L.-M. Chen, P. Thawatsupha, M. Chittaganpitch, S. Waicharoen, D.T. Nguyen, T. Nguyen, H.H.T. Nguyen, J.-H. Kim, L.T. Hoang, C. Kang, L.S. Phuong, W. Lim, S. Zaki, R.O. Donis, N.J. Cox, J.M. Katz, & T.M. Tumpey. 2005. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 79:11788-11800.
Matrosovich, M.N., & H.D. Klenk. 2003. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13:85–97.
Matrosovich, M.N., A.S. Gambaryan, S. Teneberg, V.E. Piskarev, S.S. Yamnikova, D.K. Lvov, J.S. Robertson, & K.A. Karlsson. 1997. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–234.
Matrosovich, M.N., N. Tuzikov, A. Bovin, A. Gambaryan, A. Klimov, M.R. Castrucci, I. Donatelli, & Y. Kawaoka. 2000. Early alterations of the receptor-binding properties of H1, H2, H3 avian influenza virus haemagglutinins after their introduction into mammals. J Virol. 74:8502–8512.
Matrosovich, M.N., N. Zhou, Y. Kawaoka, & R. Webster. 1999. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73:1146-1155.
Matrosovich, M.N., S. Krauss, & R.G. Webster. 2001. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156-162.
McKimm-Breschkin, J.L. 2000. Resistance of influenza viruses to neuraminidase inhibitors, a review. Antiviral Res. 47:1-17.
Mir-Shekari, S. Y., D.A. Ashford, D.J. Harvey, R.A. Dwek, & I.T. Schulze. 1997. The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. J. Biol. Chem. 272: 4027-4036.
Moorman, J. 2003. Viral characteristics of influenza. South Med. J. 96:758-761.
Murphy, B.R., & M.L. Clements.1989. The systemic and mucosal immune response of humans to influenza A virus. Curr. Top. Microbiol. Immunol. 146:107–116.
Nicholson, K., J. Wood, & M. Zambon. 2003. Influenza. Lancet 362:1733-1745.
Ohuchi, M., R. Ohuchi, A. Feldmann, & H.-D. Klenk. 1997. Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J. Virol. 71:8377-8384.
Organización Mundial de la Salud. 2005. Antivíricos, pp. 11-20. En: Guías de la OMS para el uso de vacunas y antivíricos en las pandemias de influenza. Organización Mundial de la Salud, Ginebra, Suiza.
Organización Mundial de la Salud. 2005. Avian influenza: assessing the pandemic threat. Organización Mundial de la salud. http://www.who.int/csr/disease/influenza/H5N1-9reduit.pdf
Organización Mundial de la Salud. 2007. Reporte de la Organización Mundial de la Salud del número de casos acumulados de influenza aviar A/(H5N1) en humanos http://www.who.int/csr/disease/avian_influenza/country/cases_table_2007_02_19/en/index.html
Ortiz de Lejarazu, R., J.M. Eiros, M.A. Villanueva, A. Delgado & J. Castrodeza. 2002. Investigación en nuevas vacunas antigripales, nuevas vías de administración y nuevas indicaciones. Vacunas 3:62-72
Palese, P. 2004. Influenza: old and new threats. Nat. Med. 10:S82–S87.
Palese, P., K. Tobita, M. Ueda, & R.W. Compans. 1974. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410.
Plotch, S.J., M. Bouloy, & R.M. Krug. 1979. Transfer of 50-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc. Natl. Acad. Sci. USA. 76:1618–1622.
Plotch, S.J., M. Bouloy, I. Ulmanen, & R.M. Krug. 1981. A unique cap(m7GpppXm)- dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858.
Powers D.C., E.D. Kilbourne, & B.E. Johansson. 1996. Neuraminidase specific antibody responses to inactivated influenza virus vaccine in young and elderly adults. Clin. Diagn. Lab. Immunol. 3:511–516.
Pritchett, T.J., & J.C. Paulson. 1989. Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin. J. Biol. Chem. 264: 9850–9858.
Reuter, J.D., A. Myc, M.M. Hayes, Z. Gan, R. Roy, D. Qin, R. Yin, L.T. Piehler, R. Esfand, D.A. Tomalia, & J.R. Baker, Jr. 1999. Inhibition of viral adhesion and infection by sialic acid-conjugated dendritic polymers. Bioconjug. Chem. 10:271–278.
Roncano-Villamil, G.E. 2005. Influenza aviar: la gripa del pollo. Infection 9:139-147.
Schauer, R., & J.P. Kamerling. 1997. Chemistry, biochemistry and biology of sialic acids, pp. 243–402. In: J. Montreuil, J. F.G. Vliegenthart, & H. Schachter (Eds). Glycoproteins II (New Comprehensive Biochemistry, Vol. 29b), Elsevier Science B.V. Amsterdam, The Netherlands.
Scholtissek, C. & E. Naylor. 1988. Fish farming and influenza pandemics. Nature 331:215.
Seidel, W., F. Kunkel, B. Geisler, W. Garten, B. Herrmann, L. Dohner, & H. D. Klenk. 1991. Intraepidemic variants of influenza virus H3 hemagglutinin differing in the number of carbohydrate side chains. Arch. Virol. 120:289–296.
Senne, D.A., B. Panigraphy, Y. Kawaoka, J.E. Pearson, J. Suss, M. Lipkind, H. Kida, & R.G. Webster. 1996. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis. 40:425–437.
Shinya, K., S. Hamm, M. Hatta, H. Ito, T. Ito, & Y. Kawaoka. 2004. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258-266.
Simonsen, L., M.J. Clarke, L.B. Schonberger, N.H. Arden, N.J. Cox, & K. Fukuda. 1998. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178:53–60.
Skehel, J., & D. Wiley. 2000. Receptor binding and membrane fusion in virus entry: the influenza haemagglutinin. Annu. Rev. Biochem. 69:531–569.
Smolinski, M.S., M.A. Hamburg, & J. Lederberg. 2004. Emerging infectious diseases, pp 23-32. In: M.S. Smolinski, M.A. Hamburg, & J. Lederberg (Eds). Microbial threats to health: emergence, detection, and response, National Academies Press, Washington, DC.
Steinhauer, D.A., & J.J. Skehel. 2002. Genetics of influenza viruses. Annu. Rev. Genet. 36:305–332.
Stephenson, I., K.G. Nicholson, J.M. Wood, M.C. Zambo, & J.M. Katz. 2004. Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet 4:499–509.
Stevens, J., A. L. Corper, C.F. Basler, J.K. Taubenberger, P. Palese, & I.A. Wilson. Structure of the uncleaved Human H1 hemagglutinin from the extinct 1918 influenza virus. 2004. Science 303:1866-1870.
Stevens, J., O. Blixt, T. M. Tumpey, J. K. Taubenberger, J.C. Paulson, & I.A. Wilson. 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312: 404-410.
Stieneke-Gröber, A., M. Vey, H. Angliker, E. Shaw, G. Thomas, C. Roberts, H. D. Klenk, & W. Garten. 1992. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 11(7): 2407-2414.
Subbarao, E.K., W. London, & B.R Murphy.1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67: 1761–1764.
Subbarao, K., A. Klimov, & J. Katz. 1998. Characterization of an avian influenza virus isolated from a child with a fatal respiratory illness. Science 279:393–396.
Sullivan, K.M., A.S. Monto, & I.M. Longini. 1993. Estimates of the US health impact of influenza. Am J. Public. Health. 83:1712-1716.
Suzuki, Y., T. Ito, T. Suzuki, R. E. Holland Jr, T. M Chambers, M. Kiso, H. Ishida, & Y. Kawaoka. 2000. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol. 74:11825–11831.
Takada, A., N. Kuboki, K. Okazak, A. Ninomiy, H. Tanaka, H. Ozaki, S. Itamura, H. Nishimura, M. Enami, M. Tashiro, K.F. Shortridge, & H. Kida.1999. A virulent avian influenza virus as a vaccine strain against a potential human pandemic. J. Virol. 73:8303–8307.
Treanor, J.J. 2005. Influenza virus, pp. 2060-2065. In: G. Mandel, J. Bennett, & R. Dolin (Eds). Principles and practice of infectious diseases, Sixth edition, Elsevier Churchill Livingstone, Philadelphia.
Tsuchiya, E., K. Sugawara, S. Hongo, Y. Matsuzaki, Y. Muraki, Z.-N. Li, &. K. Nakamura. 2002. Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule. J. Gen. Virol. 83:1137–1146.
Tuzikov, A.B., N.E. Byramova, N.V. Bovin, A.S. Gambaryan, M.N. Matrosovich.1997. Monovalent and polymeric 5N-thioacetamido sialosides as tightly-bound receptor analogs of influenza viruses. Antiviral Res. 33:129–134.
Ulmer, J.B., U. Valley, & R. Rappuoli. 2006. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol. 24:1377–1383.
Ungchusak, K., P. Auewarakul, S.F. Dowell, R. Kitphati, W. Auwanit, P. Puthavathana, M. Uiprasertkul, K. Boonnak, C. Pittayawonganon, N.J. Cox, S.R. Zaki, P. Thawatsupha, M. Chittaganpitc, R. Khontong, J.M. Simmerman, & S. Chunsutthiwat. 2005. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl. J. Med. 352:333–340.
Vey, M., M. Orlich, S. Adler, H.D. Klenk, R. Rott, & W. Garten. 1992. Haemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the recognition motif R-X-R/K-R. Virology 188:408–413.
Vigerust, D. J. & V.L. Shepherd. 2007. Virus glycosylation: role in virulence and immune interactions. Trends in Microbiol. 15:211-218.
Vigerust, D. J., K. B. Ulett, K. L. Boyd, J. Madsen, S. Hawgood, & J.A. McCullers. 2007. N-Linked glycosylation attenuates H3N2 influenza viruses. J. Virol. 81: 8593-8600.
Vines, A., K. Wells, M. Matrosovich, M.R. Castrucci, T. Ito, & T. Kawaoka. 1998. The role of influenza A virus haemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J. Virol. 72:7626–7631.
Wagner, R., D. Heuer, T. Wolff, A. Herwig & H.-D. Klenk. 2002. N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. J. Gen. Virol. 83:601–609.
Wagner, R., M. Matrosovich, & H.D. Klenk. 2002. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 12: 159–166.
Wagner, R., R. Wagner, T. Wolff, A. Herwig, S. Pleschka, & H.-D. Klenk. 2000. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J. Virol. 74: 6316–6323.
Wang, C., K. Takeuchi, L.H. Pinto, & R.A. Lamb. 1993. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J. Virol. 67:5585–5594.
Ward, C.W., J. M. Murray, C.M. Roxburgh, & D.C. Jackson.1983. Chemical and antigenic characterization of the carbohydrate side chains of an Asian (N2) influenza virus neuraminidase. Virology 126:370-375.
Webster, R.G. 2002. The importance of animal influenza for human disease. Vaccine 203:S16–S20.
Webster, R.G. 2004. Wet markets: a continuing source of severe acute respiratory syndrome and influenza?. Lancet 363 (9404):234-236.
Webster, R.G., & D.J. Hulse. 2004. Microbial adaptation and change: avian influenza. Rev. Sci. Tech. Off. Int. Epiz. 23:453-465.
Webster, R.G., & E.A. Govorkova.2006. H5N1 influenza continuing evolution and spread. N. Engl. J. Med. 335:2174–2177.
Weis, W., J.H. Brown, S. Cusack, J.C. Paulson, J.J. Skehel, & D.C. Wiley. 1988. Structure of the influenza virus haemagglutinin complexed with its receptor siálico acid. Nature 333:426–431.
Whitesides, G.M., M. Mammen, & G. Dahmann. 1995. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38: 4179–4190.
Wiley, D.C., & J.J. Skehel. 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann. Rev. Biochem. 56:365–394.
Wiley, D.C., I. A. Wilson, & J. J. Skehel. 1981. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature 289:373–378.
Wood, G.W., J.W. McCauley, J.B. Bashiruddin, & D.J. Alexander. 1993. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch. Virol. 130:209–217.
Yamada, S., Y. Suzuki, T. Suzuki, M.Q. Le, C.A. Nidom, Y. Sakai-Tagawa, Y. Muramoto, M. Ito, M. Kiso, T. Horimoto, K. Shinya, T. Sawada, M. Kiso, T. Usui, T. Murata, Y Lin, A. Hay, L.F. Haire, D. J. Stevens, R.J. Russell, S.J. Gamblin, J.J. Skehel, & Y. Kawaoka. 2006. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444: 378-382.