2007, Número 3-4
<< Anterior Siguiente >>
Microbiología 2007; 49 (3-4)
Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater
Lima SAA, Pontes PM, Silva FRG, Ernesto Hofer E
Idioma: Ingles.
Referencias bibliográficas: 30
Paginas: 68-73
Archivo PDF: 134.40 Kb.
RESUMEN
Se estudiaron linajes de bacterias Gram negativas tolerantes a K
2Cr
2O
7 o a HgCl
2 aisladas de aguas residuales de una escuela de química en lo que respecta a la capacidad de utilización de fenol como única fuente de carbono en presencia de esos metales. Ambos metales mostraron un significativo efecto de inhibición al utilizar el compuesto aromático, pero un linaje Cr-tolerante (
Burkholderia cepacia - JT50) logró metabolizar fenol en presencia de hasta 200 µg/ml de K
2Cr
2O
7. Algunos estudios adicionales con ese linaje indicaron, que en las condiciones de los ensayos utilizados, su mecanismo de tolerancia no involucró procesos de reducción química de Cr
6+ a Cr
3+, ni tampoco variación en los niveles del cromo total en el medio de cultivo.
REFERENCIAS (EN ESTE ARTÍCULO)
Roe, F.J.C., and Carter, R.L. 1969. Chromium carcinogenesis: calcium chromate as a potent carcinogen from the subcutaneous tissues of the rat. Brit. J. Cancer. 23: 172-176.
Enterline, P.E. 1974. Respiratory cancer among chromate workers. J. Occup. Med. 16: 523-526.
Petrilli, F.L., and De Flora, S. 1977. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl. Environ. Microbiol. 33:805-809.
Cervantes, C., Campos-Garcia, J., Devars, S., Gutiérres-Corona, F., Losa-Tavera, H., Torres-Guzmán., J.C., and Moreno-Sánchez, R. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347.
Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S., and Kawai, K. 1987. Enzimatic reduction of hexavalent chromium by hexavalente chromium tolerant Pseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417-2420.
Wang, Y.T., and Shen, H. 1995. Bacterial reduction of hexavalent chromium. J. Indust. Microbiol. 14:159-163.
Camargo, F. A. O., Bento, F. M., Okeke, B. C., and Frankenberger, W. T. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32:1228-1233.
Thompson, G.A., and Watling, R.J. 1984. Comparative study of the toxicity of metal compounds to heterotrophic bacteria. Bull. Environ. Contam. Toxicol. 33: 114-120.
Boening, D.W. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40:1335-1351.
Robinson, J.B., and Tuovinen, O.H. 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol. Rev. 48: 95-124.
Keweloh, H., Weyrauch, G., and Rehm, H.J. 1990. Phenol induced membrane changes in free and immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 33: 66-71.
Sikkema, J., Bont, J.A.M., and Poolman, B. 1995. Mechanisms of membrane toxicity of hidrocarbons. Microbiol. Rev. 59: 201-202.
Yang, R.D., and Humphrey, A.E. 1975. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17:1211-1235.
Marcos, R.F., Larry, J.F., and Tiedje, J.M. 1997. Phenol-and-toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63: 1523-1530.
Alva, V.A., and Peyton, B.M. 2003. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ. Sci. Technol. 37: 4397-4402.
Geng, A., Soh, A.E., Lim, C.J., and Loke, L.C. 2006. Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge. Appl. Microbiol. Biotechnol. 71: 728-735.
Bazire A., Diab, F., Jebbar, M., and Haras, D.J. 2007. Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. Ind. Microbiol Biotechnol. 34: 5-8.
Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey’s manual of determinative bacteriology. 9th ed. Williams & Wilkins, Baltimore, Md.
Koneman, E.W., Allen, S.D, Janda, W.M., Schreckenberger, P.C., and Winn, W.C. Jr. 1997. Color atlas and textbook of diagnostic microbiology. 5th ed. Philadelphia: JB Lippincott Co.
Marczenko, Z. 1976. Spectrophotometric determination of elements. Ellis Horwood Ltd., Chichester, Sussex.
Apha (American Public Health Association). 1999. Standard methods for the examination of water and wastewater, 20th ed., American Public Health Association, Washington, D.C.
Kuo C-W., and Sharak Genthner, B.R. 1996. Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl. Environ. Microbiol. 62:2317-2323.
Fijalkowska, S., Katarzyna, L., and Dlugonski, J. 1998. Bacterial elimination of polycyclic aromatic hidrocarbons and heavy metals. J. Basic Microbiol. 38:361-369.
Pahan, K., Chaudhuri, J., Ghosh, D., Gachhui R., Ray, S., and Mandal, A. 1995. Enhanced elimination of HCl2 from natural water by a broad-spectrum Hg-resistant Bacillus pasteuri strain DR2 in presence of benzene. Bull. Environ. Contam. Toxicol. 55: 554-561.
Horitsu, H., Futo, S., Ozawa, K., and Kawai, K. 1983. Comparison of characteristics of hexavalent chromium tolerant bacterium, Pseudomonas ambigua G-1, and its hexavalent chromium sensitive mutant. Agric. Biol. Chem. 47: 2907-2908.
Ohtake, H., Cervantes, C., and Silver, S. 1987. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853-3856.
Cervantes, C., and Ohtake, H. 1988. Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 56: 173-176.
Nies, A., Nies, D.H., and Silver, S. 1989. Cloning and expression of plasmid genes encoding resistance to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171:5065-5070.
Alvarez, A.H., Moreno-Sánchez, R., and Cervantes, C. 1999. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol. 181:7398-7400.
Shen, H., and Wang, Y.T. 1995. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbiol. 61: 2754-2758.