2008, Número 2
Efectos neurológicos de la ligadura de la carótida común izquierda e hipoxia inducida en ratas neonatas
Quinzaños-Fresnedo J, Coronado-Zarco R, Arch-Tirado E, Verduzco-Mendoza A, Valle-Cabrera G, Alfaro-Rodríguez A
Idioma: Español
Referencias bibliográficas: 45
Paginas: 119-125
Archivo PDF: 88.19 Kb.
RESUMEN
Introducción: La encefalopatía hipóxico-isquémica es causa de discapacidad en la población infantil. Uno de los modelos animales más utilizados en la encefalopatía hipóxico-isquémica en cerebro inmaduro es la preparación de Levine aplicada por Rice en ratas neonatas, que consiste en la ligadura de la arteria carótida común izquierda e hipoxia. El objetivo de esta investigación fue estudiar los efectos neurológicos de la ligadura de la carótida común izquierda e hipoxia inducida en ratas neonatas.
Material y métodos: Se utilizaron cinco ratas control, cinco ratas sham y cinco ratas con lesión hipóxico-isquémica mediante la aplicación de la preparación de Levine a los siete días de edad. A los 42 días se evaluaron todas las ratas mediante el tiempo de agarre de una varilla, la prueba del reflejo posterior y el análisis de la actividad locomotora espontánea (bipedestación, número de casillas pisadas, tiempo de acicalado).
Resultados: El grupo con lesión presentó menor tiempo de agarre, menor número de respuestas adecuadas en el reflejo posterior y menor número de casillas pisadas (p = 0.024, 0.002 y 0.0001, respectivamente). No se encontraron diferencias estadísticamente significativas en el tiempo de acicalado ni en el número de bipedestaciones.
Conclusión: Las ratas neonatas en quienes se aplicó la preparación de Levine tuvieron alteraciones clínicas que pueden semejar algunos de los signos que acompañan a la parálisis cerebral infantil (problemas en prensión, respuesta a reflejos posturales y locomoción).
REFERENCIAS (EN ESTE ARTÍCULO)
1. González F, Miler S. Does perinatal asphyxia impair cognitive function without cerebral palsy? Arch Dis Child Fetal Neonatal 2006;91:F454-F459.
2. Vannucci R, Perlman J. Intervention for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100:1004-1014.
3. Meberg A, Broch H. Etiology of cerebral palsy. J Perinatol Med 2004;32:434-439.
4. Kerr Graham H, Delber P. Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg 2003;85:157-166.
5. Arroyave G. Coste-beneficio del tratamiento farmacológico de la parálisis cerebral con espasticidad en México. Rev Esp Salud Publica 2000;74:549-559.
6. Northington F. Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke. ILAR J 2006;47:32-38.
7. Aswal S, Pearce W. Animal models of neonatal stroke. Curr Opin Pediatr 2001;13:506-516.
8. Gleason CA, Hamm C, Jones MD Jr. Effect of acute hypoxemia on brain blood flow and oxygen metabolism in immature fetal sheep. Am J Physiol 1990;258:H1064-1069.
9. Harris AP, Helou, S Gleason CA, Traystman RJ, Koeehler RC. Fetal cerebral peripheral circulatory responses to hypoxia after nitric oxide synthase inhibition. Am J Physiol Regul Integr Comp Physiol 2001;281:R382-R390.
10. González H, Hunter CJ, Bennet L, Power GG, Gunn AJ. Cerebral oxygenation during postasphyxial seizures in near-term fetal sheep. J Cereb Blood Flow Metab 2005;25:911-918.
11. Lotgering FK, Bishai JM, Struijk PC, Blood AB, Hunter CJ, Oberg KC, et al. Absence of robust ischemic preconditioning by five 1-minute total umbilical cord occlusion in fetal sheep. J Gynecol Invest 2004;11:449-456.
12. Clancy B, Darlington B, Finlay BL. Translating developmental time across mammalian species. Neuroscience 2001;105:7-17.
13. Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model of human cerebral palsy? J Neurosci 2004;24:24-34.
14. Derrick M, Brady E, Tan S. The in-vitro fate of rabbit fetal brain cells after acute in vivo hypoxia. J Neurosci 2001;21:RC138.
15. Tan S, Bose R, Derrick M. Hypoxia-ischemia in fetal rabbit brain increases reactive nitrogen species production: quantitative estimation of nitrotyrosine. Free Radical Biol Med 2001;30:1045-1051.
16. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes P. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 2000;47:64-72.
17. Elovitz MA, Mrinalini C, Sammel M. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res 2006;59:50-55.
18. Cenci A, Whishaw IQ, Schallert T. Animal models of neurological deficitis: how relevant is the rat? Nature Rev Neurosci 2002;3:574-579.
19. Tuor UI, Del Bigio MR, Chumas PD. Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification. Cerebrovasc Brain Metab Rev 1996;8:159-193.
20. Volpe J. Brain injury in the premature infant–from pathogenesis to prevention. Brain Dev 1997;19:519-534
21. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosc Res1999;55:158-163.
22. Vexler ZS, Ferreiro DM. Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol 2001;6:99-108.
23. Yager JY. Animal models of hypoxic-ischemic brain damage in the newborn. Seminar Pediatr Neurol 2004;11:31-46.
24. Cowell R, Plane JM, Silverstein FS. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. J Neurosci 2003;23:9459-9468.
25. Cowell R, Xu H, Galasso JM, Silverstein FS. Hypoxic-ischemic injury induces macrophage inflammatory protein-1a expression in immature rat brain. Stroke 2002;33:795-801.
26. Hossain MA, Russell JC, O’Brien R, Laterra J. Neuronal pentraxin 1: a novel mediator of hypoxic-ischemic injury in neonatal brain. J Neurosci 2004;24:4187-4196.
27. Baud O. Posnatal steroid treatment and brain development. Arch Dis Child Fetal Neonatol 2004;89:96-100.
28. Gunn AJ. Cerebral hypothermia for prevention of brain injury following perinatal asphyxia. Curr Opin Pediatr 2000;12:111-115.
29. Sirimanne ES, Blumberg RM, Bossano D, et al. The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat. Pediatr Res 1996;217:1193-1199.
30. Battin MR, Penrice J, Gunn TR, Gunn AJ. Treatment of term infants with head cooling and mild systemic hypothermia (35°C and 34.5°C) after perinatal asphyxia. Pediatrics 2003;111:244-251.
31. Shankaran S, Laptook, AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353:1574-1584.
32. Battin, MR, Dezoete JA, Gunn TR, Gluckman PD, Gunn AJ. Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia. Pediatrics 2001;107:480-484.
33. Balduini W. Mazzoni E, Carloni S, DeSimoni MG, Perego C, Sironi L, et al. Prophylactic but not delayed administration of simvastatin protects against long-lasting cognitive and morphological consequences of neonatal hypoxic-ischemic brain injury, reduces interleukin-1b and tumor necrosis factor-a mRNA induction, and does no affect endothelial nitric oxide synthase expression. Stroke 2003;34:2007-2012.
34. Park WS, Sung DK, Kang S, Koo SH, Kim YJ, Lee JH, et al. Therapeutic window for cycloheximide treatment after hypoxic-ischemic brain injury in neonatal rats. J Korean Med Sci 2006;21:490-494.
35. Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-141.
36. Bona E, Johansson BB, Hagberg H. Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res 1997;42:678-683.
37. Puurunen K. The effects of pharmacotherapy and training on functional recovery after global and focal cerebral ischemia in rats. Department of Neurology Series of Reports 2001;58.
38. Hori Y, Takeda H, Tsuji M, Matsumiya T. Differentiation of the inhibitory effects of calcium antagonists on abnormal behaviors induced by methamphetamine or phencyclidine. Pharmacology 1998;56:165-174.
39. Towfighi J, Yager JY, Housman C, Vannucci RC. Neuropathology of remote hypoxic-ischemic damage in the immature rat. Acta Neuropathol 1990;81:578-587.
40. Renner MJ, Pierre PJ. Development of exploration and investigation in the Norway rat (Rattus norvegicus). J Gen Psych 1998;125:270-291.
41. Isaacson RL, Green EJ. The effect of ACTH1-24 on locomotion, exploration, rearing, and grooming. Behav Biol 1978;24:118-122.
42. Zafeiriou D. Primitive reflexes and postural reactions in the neurodevelopmental examination. Pediatr Neurol 2004;31:1-8.
43. Einspieler C, Cioni G, Paolicelli PB, Bos AF, Dressler A, Ferrari F, et al. The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy. Neuropediatrics 2002;33:73-78.
44. Eliasson AC, Forssberg H, Hung YC, Gordon AM. Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study. Pediatrics 2006;118:e1226-e1236.
45. Fedrizzi E, Pagliano E, Andreucci E, Oleari G. Hand function in children with hemiplegic cerebral palsy: prospective follow-up and functional outcome in adolescence. Dev Med Child Neurol 2003;45:85-91.