2007, Número S4
<< Anterior Siguiente >>
Arch Cardiol Mex 2007; 77 (S4)
Biología molecular de la insuficiencia cardíaca
Eng-Ceceña L
Idioma: Español
Referencias bibliográficas: 102
Paginas: 94-105
Archivo PDF: 170.20 Kb.
RESUMEN
La insuficiencia cardíaca es un desorden complejo en el que participan respuestas mal adaptadas que llevan a regulación y función defectuosa de múltiples sistemas biológicos. La comprensión adecuada de estos procesos es primordial para el desarrollo de nuevas conductas terapéuticas. Esta revisión, dirigida a la biología molecular del propio corazón, se divide en tres apartados, con cierta redundancia entre sí: hipertrofia y remodelación, composición molecular del corazón insuficiente, y mecanismos moleculares que llevan a la insuficiencia cardíaca.
REFERENCIAS (EN ESTE ARTÍCULO)
Guadalajara-Boo JF: Importancia de los mecanismos neurohormonales en la terapéutica de la insuficiencia cardíaca. Programa de actualización continua para cardiólogos PAC Cardio-1 (B-2), Sociedad Mexicana de Cardiología, 1998.
Eng-Ceceña L: Comentarios de la Sociedad Mexicana de cardiología a temas selectos del 47º Congreso del Colegio Americano de Cardiología – M Packer: Pronóstico de la Insuficiencia cardíaca. ¿Qué factores rigen la progresión y la evaluación?: Papel de la actuación neurohormonal. Ed. Medical Trends SL. Barcelona, España. 1999; pag 50-53.
Poole-Wilson PA: Treatment of acute heart failure: out with the old, in with the new. JAMA 2002; 287: 1578-1580.
Grossman W, Jones D, McLaurin LP: Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1974; 56: 56-64.
Guadalajara-Boo JF, Meaney E: Remodelación ventricular, cardiorreparación y cardioprotección. PAC Cardio-1. Soc Mex Cardiol, 1997.
Gerdes AM, Kellerman SE, Moore JA, et al: Structural remodeling of cardiac myocites from patients with chronic ischemic heart disease. Circulation 1992; 86: 426-430.
Cohn J, Ferrari R, Sharpe N: on Behalf of an International Forum on Cardiac Remodeling. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 2000 35: 569-582.
Anand IS, Liu D, Chugh SS, et al: Isolated myocite contractile function is normal in postinfarct remodeles rat heart with systolic dysfunction. Circulation 1997; 96: 3974-3984.
Eichhorn ERJ, Birstow MR: Medical therapy can improve the biological properties of the chronically failing heart: a new era in the treatment of heart failure. Circulation 1996; 94: 2285-2296.
Braunwald E, Bristow MR: Congestive heart failure: fifty years of progress. Circulation 2000; 102(IV): I4-23.
Force T, et al: Stretch-activated pathways and left ventricular remodeling. J Cardiac Fail 2002; 8: 351-358.
Brancaccio M, et al: Melusin, a muscle-specific integrin b1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003; 9: 68-75.
Fatkin D, Graham RM: Molecular mecanisms of inherited cardiomyopathies. Physiol Rev 2002; 82: 945-980.
DeBosch B, Treskov I, Lupu TS, et al: Akt1 is required for physiological cardiac growth. Circulation; 113: 2097-2104.
Walsh K: Akt signaling and growth of the heart. Circulation 2006; 113: 2032-2034.
Dorn II GW, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005; 115: 527-537.
Tsutsu H, Tagawa H, Kent RL, et al: Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation 1994; 90: 533-555.
Swynghedauw B: Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986; 66: 710-771.
Nadal-Ginard B, Mahdavi V: Molecular basis of cardiac performance: plasticity of the myocardium generated through protein isoform switches. J Clin Invest 1989; 84: 1693-1700.
Lowes BD, Minobe WA, Abraham WT, et al: Changes in gene expression in the intact human heart: down regulation of a-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997; 100: 2362-2370.
Nakao K, Minobe WA, Roden RL, et al: Myosin heavy chain gene expresión in human heart failure. J Clin Invest 1997; 100: 2362-2370.
Miyata S, Minobe WA, Bristow MR, et al: Myosin heavy chain isoform expression in the failing and non-failing human heart. Circ Res 2000; 86: 386-390.
Chang KC, Figueredo VM, Schreur JHM, et al: Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. J Clin Invest 1997; 100: 1742-1749.
Meyer M, Schillinger W, Pieske B, et al: Alterations in sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92: 778-784.
Bristow MR: Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993; 22(suppl A): 61-71.
Hein S, et al: The role of the cytoskeleton in heart failure. Cardiovasc Res 2000; 45: 273-278.
Weber KT: Cardioreparation in hypertensive heart disease. Hypertension 2001; 38: 588-591.
Wilson EM, Spinale FG: Myocardial remodeling and matrix metalloproteinases in heart failure: turmoil within the intersticium. Ann Med 2001; 33: 623-634.
Li Z, Bing OH, Long X, et al: Increased cardiomyocite apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997; 272: H2313-H2319.
Sabbah HN: Apoptoic cell death in heart failure. Cardiovasc Res 2000; 45: 704-712.
Hare JM, Stamler JS: NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005; 115: 509-517.
Hunter JJ, Chien KR: Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999; 341: 1276-1283.
Chien KR: Genomic Circuits and the Integrative Biology of Cardiomyopathies. Eur Heart J 2001; 3(Suppl L): L3-L9.
Esposito G, et al: Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 2002; 105: 85-92.
del Monte F, Harding SE, Schmidt U, et al: Restoration of contractile function in isolated cardyomyocites from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 189-198.
Hirota H, et al: Loss of gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97: 189-198.
Hata JA, Williams ML, Koch WJ: Genetic manipulation of myocardial beta-adrenergic receptor activation and desensitization. J Mol Cell Cardiol 2004; 37: 11-21.
Mani K, Kitsis RN: Myocite apoptosis: programming ventricular remodeling. J Am Coll Cardiol 2003; 41: 761-764.
Tardiff JC: Cardiac hypertrophy:stressing out the heart. J Clin Invest 2006; 116: 1467-1470.
Anderson PAW, Greig A, Mark TM, et al: Molecular basis of human troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 1995; 76: 681-686.
Morano I, Hadicke K, Hasses H, et al: Changes in essential myosin light chain isoform expression provide a molecular basis of isometric force regulation in the failing human heart. J Mol Cell Cardiol 1997; 29: 1177-1187.
Pagani ED, Alousi AA, Grant AM, et al: Changes in myofibrillar content and Mg-ATPasa activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, and mitral valve insufficiency. Circ Res 1988; 63: 380-385.
Alpert NR, Mulieri LA, Litten RZ: Functional significance of altered myosin adenosine triphosphatese activity in enlarged hearts. Am J Cardiol 1979; 44: 947-953.
McKinsey TA, Olson EN: Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005; 115: 538-546.
Marks AR: A Guide to the Perplexed – Towards an Understanding of the Molecular Basis of Heart Failure. Circulation 2003; 107: 1456-1459.
Marks AR, Reinen S, Marx SO: Progression of heart failure. Is protein kinase A hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation 2002; 105: 272-275.
Marx SO, Reiken S, Hisamatsu Y, et al: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000; 101: 365-376.
Brillantes AB. Ondrias K, Scott A, et al: Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994; 77: 513-523.
Kaftan E, Marks AR, Ehrlich BE: Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Cir Res 1996; 78: 990-997.
Guo T, Zhang T, Mestril R, Bers DM: Ca/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocites. Circ Res 2006; 99: 398-406.
Ai X, Curran JW, Shannon TR, et al: Ca2+/calmodulin-dependant protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 2005; 97: 1314-1322.
Kockskämper J, Pieske B: Phosphorylation of the cardiac ryanoide receptor by Ca2+/calmodulin-dependent protein kinase II. The dominating twin of protein kinase A. Cir Res 2006; 99: 333-335.
Xiao B, Jiang MT, Zhao M, et al: Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Cir Res 2005; 96: 847-855.
Li Y, Kranias EG, Mignery GA, et al: Protein Kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocites. Cir Res 2002; 90: 309-316.
Jiang MT, Lokuta AJ, Farell EF, et al: Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circ Res 2002; 91: 1015-1022.
Stange M, Xu L, Balshaw D, Yamaguchi N, Meissner G: Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorilation mutants. J Biol Chem 2003; 278: 51693-51702.
Yano M, Kobayashi S, Kohno M, et al: FKBP12.6-mediated stabilization of calcium-release channel (ryanodide receptor) as a novel therapeutic strategy against heart failure. Circulation 2003; 107: 476-483.
Yano M, Ikeda Y, Matsuzaki M: Altered intracelular Ca2+ handling in heart failure. J Clin Invest 2005; 115: 556-564.
Lohse MJ, Engelhardt S, Eschenhagen T: What is the role of b-adrenergic signaling in heart failure? Cir Res 2003; 93: 896-906.
Zhu W, Zeng X, Zheng M, Xiao RP: The enigma of b2-adrenergic receptor Gi signaling in the heart. The good, the bad, and the ugly. Circ Res 2005; 97: 507-509.
Bristow MR, Ginsburg R, Minobe WA, et al: Decreased catecholamine sensitivity and b-adrenergic-receptor density in mailing human hearts. N Engl J Med 1982; 307: 205-211.
Bristow MR: Mechanisms of action of beta-blocking agents in heart failure. Am J Med 1997; 80: 26L-40L.
Ritter O, Neyses L: The molecular basis of myocardial hypertrophy and heart failure. Trends Mol Med 2003; 9: 313-321.
Schmitt JP, Kamisago M, Asahi M, et al: Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 2003; 299: 1410-1413.
Colucci WS, Braunwald E: Pathophysiology of heart failure, chapter 21 in: Braunwald’s Heart Disease. A Textbook of Cardiovascular Medicine. Philadelphia, 7th Ed. Elsevier Saunders 2005. pp 509-538.
Katz AM. Heart Failure. Philadelphia, Lippincott Williams & Wilkins, 2000.
Ingwall JS: Energetic basis for heart failure. In Mann DL (Ed): Heart Failure: A companion to Braunwald’s Heart Disease. A Textbook of Cardiovascular Medicine. Philadelphia, WB Saunders, 2004, pp 91-108.
Conway MA, Allis J, Ouwerkerk R, et al: Detection of low phosphocreatine to ATP ratio if failing hyperthrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 1991; 338: 973.
Hein S, Kistin S, Heling A, et al: The role of cytoskeleton in heart failure. Cardiovasc Res 2000; 45: 272-278.
Towbin JA: The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 1998; 10: 131-139.
Morita H, Seidman J, Seodman CE: Genetic causes of human heart failure. J Clin Invest 2005; 115: 518-526.
Li D, Tapscoft T, González O, et al: Desmin mutation responsible for idiopathic dilated cardiomiopathy. Circulation 1999; 100: 461-464.
Dalakas MC, Park KY, Semino-Mora C, et al: Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 2000; 342: 770-780.
Barresi R, DiBlasi C, Negri T, et al: Disruption of heart sarcoglycan complex and severe cardiomiopathy caused by beta sarcoglycan mutations. J Med Genet 2000; 37: 102-107.
Fatkin D, MacRae C, Sasaki T, et al: Missense mutations in the road domain of the lamin A/C gene as causes of dilated cardiomiopathy and conduction system disease. N Engl J Med 1999; 34: 1715-1724.
Brodsky GL, Muntoni F Miocic S, et al: Lamin A/C gene mutation associated with dilated cardiomyopathy with skeletal involvement. Circulation 2000; 101: 473-476.
Weber KT. Brilla CG: Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849-1865.
Weber KT: Cardioreparation in hypertensive heart failure. Hypertension 2001; 38: 588-591.
Wilson EM, Spinale FG: Myocardial remodelling and matriz metalloproteinases in heart failure: turnmoil within the intersticium. Ann Med 2001; 33: 623-634.
Martínez-Sánchez C, García López S, Rodríguez-Briones I, et al: Insuficiencia cardíaca. Libro 9. Plac Cardio-3 Programa de Actualización Continua en Cardiología. Soc Mex Cardiol y Soc Interam Cardiol. México. Intersistemas. 2002.
Foo RSY, Mani K, Kistis RN: Death begets failure in the heart. J Clin Invest 2005; 115: 565-571.
Rosas-Peralta M, Paniagua SR, Kuri J: Muerte celular programada (apoptosis). Arch Inst Cardiol Mex 1999; 69: 399-403.
Sharov, VG, Sabbah, HN, Shimoyama, H, et al: Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996; 148: 141-149.
Olivetti, G, Abbi, R, Quaini, F, et al: Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131-1141.
Teiger, E, Than, VD, Richard, L, et al: Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996; 97: 2891.
Nadal-Ginard B, Kajstura J, Leri A, Anversa P: Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003; 92: 139-150.
Leri A, Claudio PP, Li Q, et al: Stretch-mediated release of angiotensin II induces myocite apoptosis by activating p53 that enhances the local renin-angiotensin system and decrease the Bcl-2 to Bax protein ratio in the cell. J Clin Invest 1998; 101: 1326-1342.
Webster KA, Bishopric NH: Apoptosis inhibitors for heart disease. Circulation 2003; 108: 2954-2956.
Yahoita H, Ogawa K, Maehara K, Maruyama Y: Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998; 97: 276-281.
Hayakawa Y, Chandra M, Miao W, et al: Inhibition of cardiac myocite apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 2003; 108: 3036-3041.
Benjamín IJ, Schneider: Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 2005; 115: 495-499.
Rosas-Peralta M: Mecanismos de progresión en la insuficiencia cardíaca. Arch Cardiol Mex 2001; 71: S153-S159.
Garrington TP, Jonson GL: Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11: 211-218.
Yamazaki T, et al: Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocites. J Clin Invest 1995; 96: 438-446.
Paul A, et al: Stress-activated protein kinases: activation, regulation, and function. Cell Signal 1997; 9: 403-410.
Crabtree GR, Olson EN: NFAT signaling: choreographing the social lives of cells. Cell 2002; 109(suppl.): S67-S79.
Wilkins BJ, Molkentin JD: Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol 2002; 541: 1-8.
Bueno OF, et al: Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res 2002; 53: 806-821.
Anversa P, Nadal-Ginard B: Myocite renewal and ventricular remodelling. Nature 2002; 415: 240-243.
Assmus B, Honold J, Schächinger V, et al: Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355: 1222-1232.
Rosenzweig A: Cardiac cell therapy–Mixed results from mixed cells. N Engl J Med 2006; 355: 1274-1277.
Bartunek J, Dimmeler S, Drexler H, et al: The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Heart J 2006; 27: 1338-1340.