2008, Número 1
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2008; 16 (1)
Genes implicados en las formas monogénicas de la hipercolesterolemia familiar
Riba L
Idioma: Español
Referencias bibliográficas: 59
Paginas: 24-31
Archivo PDF: 196.75 Kb.
RESUMEN
A raíz del desarrollo del Proyecto del Genoma Humano, los descubrimientos resultantes sobre la caracterización molecular y fisiológica del funcionamiento celular han revolucionado los conceptos de la etiología y tratamiento de la enfermedad humana, no sólo para padecimientos mendelianos sino para la posibilidad de evaluar la susceptibilidad a las formas complejas (poligénicas y multifactoriales) más comunes de estas enfermedades. Las complicaciones de la aterosclerosis son la causa principal de mortalidad en todos los grupos étnicos y se encuentran entre las principales causas de incapacidad prematura y definitiva. En la presente revisión se discutirá el componente genético de la aterosclerosis, y se cubrirán de manera concisa las formas monogénicas de la hipercolesterolemia familiar en sus formas autosómicas dominantes y recesivas, así como los genes implicados. La prevalencia de mutaciones o polimorfismos en distintos genes responsables de condiciones monogénicas o de genes de susceptibilidad, así como las posibles combinaciones de estos últimos, pueden ser muy variables en diferentes grupos étnicos. Debido a esto, la caracterización genética y molecular de nuevas formas de dislipidemias monogénicas por mapeo y clonación posicional se ha perfilado como una estrategia importante para el mejor entendimiento de vías metabólicas conocidas así como la identificación de nuevas vías en el metabolismo de lípidos. A su vez, este conocimiento tendrá un impacto en el desarrollo de nuevos blancos terapéuticos y en la aplicación de terapias individualizadas para el tratamiento de la hipercolesterolemia y otras dislipidemias para la prevención de la enfermedad coronaria.
REFERENCIAS (EN ESTE ARTÍCULO)
Dirección General de Información y Evaluación del Desempeño. Secretaría de Salud. México. Salud Pública de México 2002: 6.
Reckless JPD. Cost effectiveness of statins. Curr Opinion Lipidol 2000; 11: 351-56.
Aguilar-Salinas CA, PHR Barrett, G. Schonfeld. Description of a kindred with familial combined hyperlipidemia with unusual kinetic abnormalities of the apolipoprotein B containing lipoproteins. Effects of pravastatin therapy. Arterioscler Thromb Vasc Biol 1997; 17(1): 72-82.
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34-47.
4S Investigators. Randomized trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 334: 1383-89.
Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 1987; 84(19): 6919-6923.
Hegele RA. Monogenic dyslipidemias: Window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 2001; 69: 1161-77.
Varret M, Rabes JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet 1999; 64(5): 1378-87.
Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154-56.
García CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL adaptor protein. Science 2001; 292: 1394-98.
Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 2001; 27(1): 79-83.
Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290(5497): 1771-75.
Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002; 110(1): 109-17.
Goldstein JL, Brown S. Familial Hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic inherited disease. New York: McGraw-Hill; 1995: 1215-250.
Aguilar-Salinas C. Lipoproteínas y Aterogénesis II. Fisiopatología de las hiperlipidemias primarias. Rev INNSZ 1989; (1): 4–11.
Aguilar CA, Olaiz G, Valles V, Ríos JM, Gómez FJ, Rull JA, Rojas R, Franco A, Sepulveda J. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res 2001; 42: 1298–307.
Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000; 105(4): 521-32.
Aguilar-Salinas CA. Hipercolesterolemia Familiar. Rev Invest Clin 2001; 53(3): 254–65.
Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics 2003; 33 (Suppl): 228-37.
Haddad L, Day I, Hunt S, Williams R, Humphries S, Hopkins P. Evidence for a third genetic locus causing familial hypercholesterolemia: a non-LDLR, non-APOB kindred. Journal of Lipid Research 1999; 40: 1113-122.
Saint-Jore B, Varret M, Dachet C, Rabes JP, Devillers M, Erlich D et al. Autosomal dominant type IIa hypercholesterolemia: evaluation of the respective contributions of LDLR and APOB gene defects as well as a third major group of defects. Eur J Hum Genet 2000; 8(8): 30-62.
Thiart R, Varret M, Lintott CJ, Scott RS, Loubser O, du Plessis L et al. Mutation analysis in a small cohort in New Zealand patients originating from the U.K. demonstrates genetic heterogeneity in familial hypercholesterolemia. Molecular and Cellular Probes 2000; 14: 299–304.
Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL et al. Familial defective apolipoprotein B-100: A mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 1990; 31: 1337–42.
The low density lipoprotein receptor (LDLR) gene in familial hypercholesterolemia at (http://www.ucl.ac.uk/fh/).
Real JT, Carmena R. Estudio Genético de las hiperlipemias. JANO EMC [serie en línea] 1999 Feb;56 (1286): 64. Available from http://db.doyma.es.
Robles-Osorio L, Ordóñez ML, Aguilar-Salinas CA, Aurón-Gómez M, Tusié-Luna MT, Gómez-Pérez FJ et al. Familial hypercholesterolemia due to ligand-defective Apolipoprotein B100. First case report in a Mexican Family. Archives of Medical Research 2003; 34: 70-5.
Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA 1989; 86(2): 587-91.
Pullinger CR, Hennessy LK, Chatterton JE, Liu W, Love JA, Mendel CM et al. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest 1995; 95(3): 1225-34.
Rabes JP, Varret M, Saint-Jore B, Erlich D, Jondeau G, Krempf M et al. Familial ligand-defective apolipoprotein B-100: simultaneous detection of the ARG3500GLN and ARG3531CYS mutations in a French population. Hum Mutat 1997; 10(2): 160-63.
Gaffney D, Pullinger CR, O’Reilly DS, Hoffs MS, Cameron I, Vass JK et al. Influence of an asparagine to lysine mutation at aminoacid 3,516 of apolipoprotein B on low-density lipoprotein receptor binding. Clin Chim Acta 2002; 321(1-2): 113-21.
Wang J, Huff E, Janecka L, Hegele RA. Low density lipoprotein receptor (LDLR) gene mutations in Canadian subjects with familial hypercholesterolemia, but not of French descent. Hum Mutat 2001; 18: 359-62.
Hunt S, Hopkins P, Bulka K, McDermott M, Thorne T, Wardell B et al. Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in Utah kindred. Arterioscler Thromb Vac Biol 2000; 35: 1089-93.
Canizales-Quinteros S, Aguilar-Salinas CA, Reyes-Rodríguez E, Riba L, Rodríguez-Torres M, Ramírez-Jiménez S et al. Locus on Chromosome 6p Linked to Elevated HDL Cholesterol Serum Levels and to Protection Against Premature Atherosclerosis in a Kindred With Familial Hypercholesterolemia. Circ Res 2003; 92: 569-76.
Seidah, NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Nat Acad Sci USA 2003; 100: 928-33.
Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet Epub. 2005; 37(2): 161-65.
Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 2006; 27(5): 460-6.
Fasano T, Cefalu AB, Di Leo E, Noto D, Pollaccia D, Bocchi L et al. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2006; [Epub ahead of print].
Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004; 65(5): 419-22.
Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet Epub. 2004; 114(4): 349-53.
Khachadurian AK, Uthman SM. Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 patients. Nutr Metab 1973; 15(1): 132-40.
Zuliani G, Vigna GB, Corsini A, Maioli M, Romagnoni F, Fellin R. Severe hypercholesterolaemia: unusual inheritance in an Italian pedigree. Eur J Clin Invest 1995; 25(5): 322-31.
Zuliani G, Arca M, Signore A, Bader G, Fazio S, Chianelli M et al. Characterization of a new form of inherited hypercholesterolemia: familial recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 1999; 19(3): 802-9.
Canizales-Quinteros S, Aguilar-Salinas CA, Huertas-Vázquez A, Ordóñez-Sánchez ML, Rodríguez-Torres M, Venturas-Gallegos JL et al. A novel ARH splice site mutation in a Mexican kindred with autosomal recessive hypercholesterolemia. Hum Genet Epub. 2005; 116(1-2): 114-20.
Norman D, Sun XM, Bourbon M, Knight BL, Naoumova RP, Soutar AK. Characterization of a novel cellular defect in patients with phenotypic homozygous familial hypercholesterolemia. J Clin Invest 1999; 104(5): 619-28.
Eden ER, Naoumova RP, Burden JJ, McCarthy MI and Soutar AK. Use of homozygosity Mapping or Identify a Region on chromosome 1 bearing a defective gene that causes autosomal recessive homozygous hypercholesterolemia in two unrelated families. Am J Hum Genet 2001; 68(3): 653-60.
Garuti R, Jones C, Li WP, Michaely P, Herz J, Gerard RD et al. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J Biol Chem 2005; 280(49): 40996-41004. Epub 2005 Sep 22.
Mishra SK, Watkins SC, Traub LM. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc Natl Acad Sci USA 2002; 99(25): 16099-104. Epub 2002 Nov 25.
Soutar AK, Naoumova RP, Traub LM. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 2003; 23(11): 1963-70. Epub 2003 Sep 4.
Soutar AK, Naoumova RP. Autosomal recessive hypercholesterolemia. Semin Vasc Med 2004; 4(3): 241-248.
Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003; 111(12): 1795-1803.
Cohen JC, Kimmel M, Polanski A, Hobbs HH. Molecular mechanisms of autosomal recessive hypercholesterolemia. Curr Opin Lipidol 2003; 14(2): 121-27.
Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 1974; 53(4): 1033-43.
Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Shore V. Sitosterolemia. J Lipid Res 1992; 33(7): 945-55.
Lu K, Lee MH, Hazard S, Brooks-Wilson A, Hidaka H, Kojima H et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001; 69(2): 278-90. Epub 2001 Jul 9.
Collins FS. Positional cloning: Let’s nos call it reverse anymore. Nat Genet 1992; 1: 3–6.
Wolff RK Positional cloning: A review and perspective. Drug Development Research 1997; 41: 129-41.
Smith JD. Apolipoprotein E4: an allele associated with many diseases. Ann Med 2000; 32: 118-24.
Talmud PJ, Humphries SE. Genetic polymorphisms, lipoproteins and coronary artery disease risk. Curr Opin Lipidol 2001; 12: 405-09.
Cohen JC, Vega GL, Grundy SM. Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999; 19: 259-67.