2008, Número 1
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2008; 16 (1)
Bases genéticas de la variación en los niveles plasmáticos de HDL-colesterol
Villarreal MMT
Idioma: Español
Referencias bibliográficas: 94
Paginas: 32-41
Archivo PDF: 143.22 Kb.
RESUMEN
Se sabe que existe una relación inversa entre los niveles plasmáticos de las lipoproteínas de alta densidad (HDL) y el riesgo de cardiopatía isquémica. Se calcula que entre 40 y 60% de la variación en los niveles de las HDL está determinada genéticamente y existe evidencia de que más de 50 diferentes genes podrían participar en la regulación de este rasgo fenotípico. Se han utilizado básicamente 2 estrategias para buscar genes que regulan los niveles plasmáticos de HDL: a) búsqueda de asociaciones con genes candidatos conocidos por participar en el metabolismo de las HDL; y b) búsqueda de otros genes mediante el escrutinio completo del genoma con el análisis de loci para rasgos cuantitativos. Estas estrategias han aportado evidencia de la participación de genes como ABCA1, APOA1, LCAT, CETP, LIPC, LPL y PON1 en este rasgo fenotípico en diferentes poblaciones incluyendo a México-Americanos. Recientemente se encontró que la variante R230C del gen ABCA1 es frecuente en la población mestiza mexicana, y que es un alelo de riesgo para presentar hipoalfalipoproteinemia. Esto representa un campo enorme de investigación de vital importancia para la prevención y el tratamiento de la aterosclerosis y la cardiopatía isquémica en nuestro país.
REFERENCIAS (EN ESTE ARTÍCULO)
Heart Disease and Stroke Statistics–2005 Update. Dallas, Texas: American Heart Association. 2005.
Estadísticas de mortalidad en México: muertes registradas en el año 2000. Salud Pública Méx, May/June 2002, vol.44, no.3, p.266-282. ISSN 0036-3634.
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143-3421.
Gordon DJ, Rifkind BM. High-Density Lipoprotein: the clinical implications of recent studies. N Engl J Med 1989; 321: 1311-16.
Genest J Jr, Marcil M, Denis M, Yu L. High density lipoproteins in health and in disease. J Investig Med 1999; 47: 31-42.
Genest J, Pedersen TR. Prevention of cardiovascular ischemic events: high-risk and seconday prevention. Circulation 2003; 107: 2059-65.
Gotto AM Jr, Brinton EA. Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report and update. J Am Coll Cardiol 2004; 43: 717-24.
Attie AD, Kastelein JP, Hayden MR. Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J Lipid Res 2001; 42: 1717-26.
Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC. High-density lipoprotein function recent advances. J Am Coll Cardiol 2005; 46: 1792-8.
Meyers CD, Kashyap ML. Pharmacologic elevation of high-density lipoproteins: recent insights on mechanisms of action and atherosclerosis protection. Curr Opin Cardiol 2004; 19: 366-73.
Duffy D, Rader DJ. High-density lipoprotein cholesterol therapies. The next frontier in lipid management. J Cardiopulm Rehab 2006; 26: 1-8.
Packard C. A triumvirate of targets in the prevention and treatment paradigm for cardiovascular disease. Atherosclerosis Suppl 2006; 7: 21-9.
Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 2006; 114: 1403-9.
Peacock JM, Arnett DK, Atwood LD, Myers RH, Coon H, Rich SS, Province MA, Heiss G. Genome scan for quantitative trait loci linked to high-density lipoprotein cholesterol: The NHLBI Family Heart Study. Arterioscler Thromb Vasc Biol 2001; 21: 1823-8.
Wang X, Paigen B. Genome-wide search for new genes controlling plasma lipid concentrations in mice and humans. Curr Opin Lipidol 2005; 16: 127-37.
Gofman J, DeLalla O, Glazier F et al. The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. Plasma 1954; 2: 413–84.
Reaven G. Banting lecture: role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607.
Garrison RJ, Kannel WB, Feinleib M et al. Cigarette smoking and HDL cholesterol. The Framingham Offspring Study. Atherosclerosis 1978; 30: 17–25.
Castelli WP, Doyle JT, Gordon T et al. Alcohol and blood lipids: the Cooperative Lipoprotein Phenotyping Study. Lancet 1977; ii: 153–5.
Durstine JL, Haskell WL. Effects of exercise training on plasma lipids and lipoproteins. Exerc Sport Sci Rev 1994; 22: 477–521. Biochem J 1992; 286: 607–11.
Jeffs JAR, Godsland IF, Johnston DG. Less than 50% of variation in HDL cholesterol between and within individuals is explained by established predictors. Atherosclerosis 2006; 184: 178-87.
Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG. Genetic associations in large versus small studies: an empirical assessment. Lancet 2003; 361: 567-71.
Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177-82.
Singaraja RR, Brunham LR, Visscher H, Kastelein JJP and Hayden MR. Efflux and atherosclerosis: The clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler Thromb Vasc Biol 2003; 23: 720-27.
Knoblauch H, Bauerfeind A, Toliat MR, Becker C, Luganskaja T, Günther UP, Rohde K, Schuster H, Junghans C, Luft FC, Nürnberg P and Reich JG. Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high density lipoprotein and low-density lipoprotein cholesterol. Hum Mol Gen 2004; 13: 993-1004.
Tregouet DA, Ricard S, Nicaud V, Arnould I, Soubigou S, Rosier M, Duverger N, Poirier O, Macé S, Kee F, Morrison C, Denefle P, Tiret L, Evans A, Deleuze JF, Cambien F. In-depth haplotype analysis of ABCA1 gene polymorphisms in relation to plasma ApoA1 levels and myocardial infarction. Arterioscler Thromb Vasc Biol 2004; 24: 775-81.
Hinds DA, Stokowski RP, Patil N, Konvicka K, Kershenobich D, Cox DR, Ballinger DG. Matching strategies for genetic association studies in structured populations. Am J Hum Genet 2004; 74: 317-25.
Ziv E, Burchard EG. Human population structure and genetic association studies. Pharmacogenomics 2003; 4: 431-41.
Wang WYS, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: Theoretical and practical concerns. Nat Rev 2005; 6: 109-18.
Sing CF, Stengard JH, Kardia SLR. Genes, Environment and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2003; 23: 1190-96.
Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999; 22: 352-55.
Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347-51.
Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999; 22: 336-345.
Oram JF and Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85: 1343-72.
Benton JL, Ding J, Tsai MY, Shea S, Rotter JI, Burke GL, Post W. Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2006; 193; 352-360.
Yamakawa-Kobayashi K, Yanagi H, Yu YX, Endo K, Arinami T, Hamaguchi H. Associations between serum high-density lipoprotein cholesterol or apolipoprotein AI levels and common genetic variants of the ABCA1 gene in Japanese school-aged children. Metabolism 2004; 53: 182-186.
Shioji K, Nishioka J, Naraba H, Kokubo Y, Mannami T, Inamoto N, Kamide K, Takiuchi S, Yoshii M, Miwa Y, Kawano Y, MiyaraT, Miyazaki S, Goto Y, Nonogi H, Tago N, Iwai N. A promoter variant of the ATP-binding cassette transporter A1 gene alters the HDL cholesterol level in the general Japanese population. J Hum Genet 2004; 49: 141-147.
Evans D, Beil FU. The association of the R219K polymorphism in the ATP-binding cassette transporter 1 (ABCA1) gene with coronary artery disease and hyperlipidemia. J Mol Med 2003; 81: 264-270.
Srinivasan SR, Li S, Chen W, Boerwinkle E, Berenson G. R219K polymorphism of the ABCA1 gene and its modulation of the variations in serum high-density lipoprotein cholesterol and triglycerides related to age and adiposity in white versus black young adults. The Bogalusa Heart Study. Metabolism 2003; 52: 930-934.
Harada T, Imai Y, Nojiri T, Morita H, Hayashi D, Maemura K, Fukino K, Kawanami D, Nishimura G, Tsushima K, Monzen K, Tamazaki T, Mitsuyama S, Shintani T, Watanabe N, Seto K, Sugiyama T, Nakamura F, Ohno M, Hirata Y, Yamazaki T, Nagai R. A common Ile 823 Met variant of ATP-binding cassette transporter A1 gene (ABCA1) alters high density lipoprotein cholesterol level in Japanese population. Atherosclerosis 2003; 169: 105-12.
Cenarro A, Artieda M, Castillo S, Mozas P, Reyes G, Tejedor D, Alonso R, Mata P, Pocoví M, Civeira F. A common variant in the ABCA1 gene is associated with a lower risk for premature coronary Heart disease in familial hypercholesterolaemia. J Med Genet 2003; 40: 163-68.
Tan JHH, Low PS, Tan YS, Tong MC, Saha N, Yang H, Heng CK. ABCA1 gene polymorphisms and their associations with coronary artery disease and plasma lipids in males from three ethnic populations in Singapore. Hum Genet 2003; 113: 106-17.
Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD, Hayden MR. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PloS Genetics 2005; 1: 739-47.
Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869-72.
Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004; 114: 1343-53.
Probst MC, Thumann H, Aslanidis C, Langmann T, Buechler C, Patsch W, Baralle FE, Dallinga-Thie GM, Geisel J, Keller C, Menys VC, Schmitz G. Screening for functional sequence variations and mutations in ABCA1. Atherosclerosis 2005; 175: 269-79.
Villarreal-Molina MT, Aguilar-Salinas CA, Rodriguez-Cruz M, Riano D, Villalobos-Comparan M, Coral-Vazquez R, Menjivar M, Yescas-Gomez P, Konigsberg-Fainstein M, Romero-Hidalgo S, Tusie-Luna MT, Canizales-Quinteros S. The ABCA1 R230C variant affects HDL-cholesterol levels and body mass index in the Mexican population: association with obesity and obesity-related comorbidities. Diabetes 2007; 56: 1881-1887.
Von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis 2006; 186: 231-9.
Hovingh GK, Brownlie A, Bisoendial RJ et al. A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J Am Coll Cardiol 2004; 44: 1429–35.
Chiesa G, Sirtori CR. Apolipoprotein A-I(Milano): current perspectives. Curr Opin Lipidol 2003; 14: 159–63.
Hamon SC, Kardia SLR, Boerwinkle E, Liu K, Klos KL, Clark AG, Singa CF. Evidence for consistent intragenic and intergenic interactions between SNP Effects in the APOA1/C3/A4/A5 Gene Cluster. Hum Hered 2006; 61: 87–96.
Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Acta 2000; 1529: 245-56.
Jonas A, von Eckardstein A, Kezdy KE, Steinmetz A, Assmann G. Structural and functional properties of reconstituted high density lipoprotein discs prepared with six apolipoprotein A-I variants. J Lipid Res 1991; 32: 97-106.
Calabresi L, Pisciotta L, Costantin A, Frigerio I, Eberini I, Alessandrini P, Arca M, Bon GB, Boscutti G, Busnach G, Frasca G, Gesualdo L, Gigante M, Lupattelli G, Montali A, Pizzolitto S, Rabbone I, Rolleri M, Ruotolo G, Sampietro T, Sessa A, Vaudo G, Cantafora A, Veglia F, Calandra S, Bertolini S, Franceschini G. The molecular basis of lecithin: cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol 2005; 25: 1972-78.
Funke H, von Eckardstein A, Pritchard PH, Albers JJ, Kastelein JJ, Droste C, Assmann G. A molecular defect causing fish eye disease: an aminoacid exchange in lecithin- cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity. Proc Natl Acad Sci USA 1991; 88: 4855-9.
Bauerfeind A, Knoblauch H, Costanza MC, Luganskaja T, Toliat MR, Nurnberg P, Luft FC, Reich JG, Morabia A. Concordant association of lipid gene variation with a combined HDL/LDL-cholesterol phenotype in two European populations. Hum Hred 2006; 61: 123-31.
Klos KL, Sing CF, Boerwinkle E, Hamon SC, Rea TJ, Clark A, Fornage M, Hixson JE. Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants. Arterioscler Thromb Vasc Biol 2006; 26: 1828-36.
Inazu A, Jiang XC, Haraki T, Yagi K, Kamon N, Koizumi J, Mabuchi H, Takeda R, Takata K, Moriyama Y, Doi M, Tall A. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest 1994; 94: 1872-1882.
De Grooth, Klerkx AH, Stroes ES, Stalenhoef AF, Kastelein JJ, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J Lipid Res 2004; 45:1967-74.
Hirano K, Yamashita S, Kuga Y, Sakai N, Nozaki S, Kihara S, Arai T, Yanagi K, Takami S, Menju M. Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler Thromb Vasc Biol 1995; 15: 1849–1856.
Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common aminoacid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J Lipid Res 1998; 39: 1071-1078.
Klerkx AHEM, Tanck MWT, Kastelein JJP, Molhuizen HOF, Jukema JW, Zwinderman AH, Kuivenhoven JA. Haplotype analysis of the CETP gene: not TaqIB, but the closely linked -629C-A polymorphism and a novel promoter variant are independently associated with CETP concentration. Hum Molec Genet 2003; 12: 111-123.
Ordovas JM, Cupples LA, Corella D, Otvos JD, Osgood D, Martinez A, Lahoz C, Coltell O, Wilson PW, Schaefer EJ. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol 2000; 20: 1323–1329.
Corella D, Saiz C, Guillen M, Portoles O, Mulet F, Gonzalez JI, Ordovas JM. Association of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population. Atherosclerosis 2000; 152: 367–376.
Klerkx AHEM, de Grooth GJ, Zwinderman AH, Jukema JW, Kuivenhoven JA, Kastelein JJP. Cholesteryl ester transfer protein concentration is associated with progression of atherosclerosis and response to pravastatin in men with coronary artery disease (REGRESS). Eur J Clin Invest 2004; 34: 21–28.
Goto A, Sasai K, Suzuki S, Fukutomi T, Ito S, Matsushita T, Okamoto M, Suzuki T, Itoh M, Okumura-Noji K, Yokoyama S. Cholesteryl ester transfer protein and atherosclerosis in Japanese subjects: a study based on coronary angiography. Atherosclerosis 2001; 159: 153–163.
Kakko S, Tamminen M, Paivansalo M, Kauma H, Rantala AO, Lilja M, Reunanen A, Kesaniemi YA, Savolainen MJ. Variation at the cholesteryl ester transfer protein gene in relation to plasma high density lipoproteins cholesterol levels and carotid intima-media thickness. Eur J Clin Invest 2001; 31: 593–602.
Meguro S, Takei I, Murata M, Hirose H, Takei N, Mitsuyoshi Y, Ishii K, Oguchi S, Shinohara J, Takeshita E, Watanabe K, Saruta T. Cholesteryl ester transfer protein polymorphism associated with macroangiopathy in Japanese patients with type 2 diabetes. Atherosclerosis 2001; 156: 151–6.
Boekholdt SM, Kuivenhoven JA, Hovingh GK, Jukema JW, Kastelein JJ, van Tol A. CETP gene variation: relation to lipid parameters and cardiovascular risk. Curr Opin Lipidol 2004; 15: 393-398.
Santamarina-Fojo S, Haudenschild C, Amar M. The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol 1998; 9: 211–219.
Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res 2003; 44: 1279-1286.
Brunzell JD, Deeb S. Lipoprotein lipase, apolipoprotein CII and hepatic lipase deficiencies. In: Scriver CR, Beaudet AL, Sly WS, Valle D, et al. The Molecular and Metabolic Bases of Inherited Disease. 8th Edition. McGraw-Hill, New York. 2001: 2789–2816.
Ruel IL, Couture P, Cohn JS, Bensadoun A, Marcil M, Lamarche B. Evidence that hepatic lipase deficiency in humans is not associated with proatherogenic changes in HDL composition and metabolism. J Lipid Res 2004; 45: 1528-36.
Shohet RV, Vega GL, Anwar A, Cigarroa JE, Grundy SM, Cohen JC. Hepatic lipase (LIPC) promoter polymorphism in men with coronary artery disease. Allele frequency and effects on hepatic lipase activity and plasma HDL-C concentrations. Arterioscler Thromb Vasc Biol 1999; 19: 1975–8.
Isaacs A, Sayed-Tabatabaei FA, Njajou OT, Witteman JCM, van Duijn CM. The -514 CT hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis. J Clin Endocrinol Metab 2004; 89: 3858–63.
Zambon A, Deeb SS, Hokanson JE, Brown BG, Brunzell JD. Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higherphism in the hepatic lipase gene (LIPC). J Lipid Res 1998; 39: 228–32.
Zhang C, Lopez-Ridaura R, Rimm EB, Rifai N, Hunter DJ, Hu FB. Interactions between the -514C®T polymorphism of the hepatic lipase gene and lifestyle factors in relation to HDL concentrations among US diabetic men. Am J Clin Nutr 2005; 81: 1429-35.
Ordovas JM, Corella D, Demissie S, Cupples LA, Couture P, Coltell O, Wilson PW, Schaefer EJ, Tucker KL. Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. Circulation 2002; 106: 2315–21.
Teran-Garcia M, Santoro N, Rankinen T, Bergeron J, Rice T, Leon AS, Rao DC, Skinner JS, Bergman RN, Despres JP, Bouchard C. Hepatic lipase variant -514C®T is associated with lipoprotein and insulin sensitivity response to regular exercise. Diabetes 2005; 54: 2251-2255.
Maitland-van der Zee AH, Klungel OH, Stricker BH, Verschuren WMM, Kastelein JJ, Leufkens HG, de Boer A. Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors (Review). Atherosclerosis 2002; 163: 213–22.
Rip J, Nierman MC, Ross CJ, Jukema JW, Hayden MR, Kastelein JJP, Stroes ESG, Kuivenhoven JA. Lipoprotein Lipase S447X. A naturally ocurring gain-of-function mutation. Arterioscler Thromb Vasc Biol 2006; 26: 1236.
Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 1999; 99: 2901-7.
Syvanne M, Antikainen M, Ehnholm S, Tenkanen H, Lahdenpera S, Ehnholm C, Taskinen MR. Heterozygosity for Asn291YSer mutation in the lipoprotein lipase gene in two Finnish pedigrees: effect of hyperinsulinemia on the expression of hypertriglyceridemia. J Lipid Res 1996; 37: 727–38.
Zhang H, Henderson H, Gagne SE, Clee SM, Miao L, Liu G, Hayden MR. Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. Biochim Biophys Acta 1996; 1302: 159-66.
Hu Y, Liu W, Huang R, Zhang X. A systematic review and meta-analysis of the relationship between lipoprotein lipase Asn291Ser variant and diseases. J Lipid Res 2006; 47: 1908-14.
Goodarzi MO, Guo X, Taylor KD, Quinones MJ, Saad MF, Yang H, Hsueh WA, Rotter JI. Lipoprotein lipase is a gene for insulin resistance in Mexican-Americans. Diabetes 2004; 53: 214-20.
Goodzari MO, Taylor KD, Guo X, Hokanson JE, Haffner SM, Cui J, Chen YDI, Wagenknecht LE, Bergman RN, Rotter JI. Haplotypes in the Lipoprotein Lipase Gene Influence Fasting Insulin and Discovery of a New Risk Haplotype. J Clin Endocrin Metab 2007; 92: 293-296.
Ross CJ, Liu G, Kuivenhoven JA, Twisk J, Rip J, van Dop W, Excoffon KJ, Lewis SM, Kastelein JJ, Hayden MR. Complete rescue of lipoprotein lipase-deficient mice by somatic gene transfer of the naturally occurring LPL S447X beneficial mutation. Arterioscler Thromb Vasc Biol 2005; 25: 2143-150.
Rader DJ. Gain-of-function mutations and therapeutic implications: lipoprotein lipase S447X to the rescue. Arterioscler Thromb Vasc Biol 2005; 25: 2018-19.
Canizales-Quinteros S, Aguilar-Salinas CA, Reyes-Rodriguez E, Riba L, Rodriguez-Torres M, Ramirez-Jimenez S, Huertas-Vazquez A, Fragoso-ntiveros V, Zentella-Dehesa A, Ventura-Gallegos JL, Vega-Hernandez G, Lopez-Estrada A, Auron-Gomez M, Gomez-Perez F, Rull J, Cox NJ, Bell GI, Tusie-Luna MT. Locus on chromosome 6p linked to elevated HDL cholesterol serum levels and to protection against premature atherosclerosis in a kindred with familial hypercholesterolemia. Circ Res 2003; 92: 569-76.
Mahaney MC, Almasy L, Rainwater DL, VandeBerg JL, Cole SA, Hixson JE, Blangero J, MacCluer JW. A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican-Americans. Arterioscler Thromb Vasc Biol 2003; 23: 339-45.
Arya R, Duggirala R, Almasy L, Rainwater DL, Mahaney MC, Cole S, Dyer TD, Williams K, Leach RJ, Hixson JE, MacCluer JW, O’Connell P, Stern MP, Blangero J. Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican-Americans. Nat Genet 2002; 30: 102-5.
Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O’Connell P, Stern MP. A Major Susceptibility Locus Influencing Plasma Triglyceride Concentrations Is Located on Chromosome 15q in Mexican-Americans. Am J Hum Genet 2000; 66: 1237–45.
Aguilar-Salinas CA, Olaiz G, Valles V, Torres JM, Perez FJ, Rull JA, Rojas R, Franco A, Sepulveda J. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res 2001; 42: 1298-307.