2007, Número 2
<< Anterior Siguiente >>
Gac Med Mex 2007; 143 (2)
El plomo inhibe la corriente activada por protones (ASIC) en las neuronas de los ganglios dorsales
Garza-Carbajal A
Idioma: Español
Referencias bibliográficas: 54
Paginas: 131-135
Archivo PDF: 78.86 Kb.
RESUMEN
Antecedentes. Los canales iónicos ASIC (del inglés Acid Sensing Ion Channel) son canales iónicos activados por reducciones transitorias en el pH extracelular. Pese a no conocerse con exactitud su mecanismo, la activación ocurre por medio de la unión de protones al dominio extracelular del canal y es modulada por iones calcio y zinc.
Objetivo. El hecho de que los cationes divalentes modifiquen el funcionamiento del canal nos llevó a preguntar si el plomo, otro catión divalente, sería capaz de alterar el funcionamiento de los ASIC.
Métodos y resultados. Mediante el uso de la técnica de fijación de voltaje en configuración de célula completa en las neuronas de los ganglios de la raíz dorsal de la rata, encontramos que el plomo inhibe la corriente ASIC en forma dependiente de la concentración.
Conclusiones. Estos resultados contribuyen a definir los mecanismos de activación de los canales ASIC y a explicar algunos de los mecanismos tóxicos del plomo en el organismo.
REFERENCIAS (EN ESTE ARTÍCULO)
Goldberg JH, Tamas G, Aronov D, Yuste R. Calcium microdomains in aspiny dendrites. Neuron 2003;40:807-821.
Krishtal OA, Osipchuk YV, Shelest TN, Smirnoff SV. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res 1987;436:352-356.
Ro HA, Carson JH. pH microdomains in oligodendrocytes. J Biol Chem 2004;279:37115-37123.
Palmer MJ, Hull C, Vigh J, von Gersdorff H. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci 2003;23:11332-11341.
Soto E, Vega R, Budelli R. The receptor potential in type I and type II vestibular system hair cells: a model analysis. Hear Res 2002;165:35-47.
Pietrobon D, Prod’hom B, Hess P. Interactions of protons with single open Ltype calcium channels. pH dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions. J Gen Physiol 1989;94:1-21.
Sitges M, Rodriguez RM. Effects of external pH variations on brain presynaptic sodium and calcium channels; repercussion on the evoked release of amino acid neurotransmitters. Neurochem Res 1998;23:477-485.
DeVries SH. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 2001;32:1107-1117.
Graf PC, Jakob U. Redox-regulated molecular chaperones. Cell Mol Life Sci 2002;59:1624-1631.
Chesler M. Regulation and modulation of pH in the brain. Physiol Rev 2003; 83:1183-1221.
Molina AJ, Verzi MP, Birnbaum AD, Yamoah EN, Hammar K, Smith PJ et al. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate. J Physiol 2004;560:639-657.
Molina AJ, Smith PJ, Malchow RP. Hydrogen ion fluxes from isolated retinal horizontal cells: modulation by glutamate. Biol Bull 2000;199:168-170.
Baumann TK, Martenson ME. Extracellular protons both increase the activity and reduce the conductance of capsaicin- gated channels. J Neurosci 2000;20:RC80.
Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 2002;34:337-340.
Abdrakhmanova G, Dorfman J, Xiao Y, Morad M. Protons enhance the gating kinetics of the alpha3/beta4 neuronal nicotinic acetylcholine receptor by increasing its apparent affinity to agonists. Mol Pharmacol 2002;61:369-378.
Banke TG, Dravid SM, Traynelis SF. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J Neurosci 2005;25:42-51.
Gao J, Wu LJ, Xu L, Xu TL. Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res 2004;1017:197-207.18. Krishek BJ, Smart TG. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol 2001;530:219-233.
Peretz A, Schottelndreier H, Aharon-Shamgar LB, Attali B. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification. J Physiol 2002;545:751-766.
Tang CM, Dichter M, Morad M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A 1990;87:6445-6449.
Stoop R, Surprenant A, North RA. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 1997;78:1837-1840.
Vega R, Mercado F, Chavez H, Limon A, Almanza A, Ortega A et al. pH modulates the vestibular afferent discharge and its response to excitatory amino acids. Neuroreport 2003;14:1327-1328.
Vega R, Soto E. Opioid receptors mediate a postsynaptic facilitation and a presynaptic inhibition at the afferent synapse of axolotl vestibular hair cells. Neuroscience 2003;118:75-85.
Baumann TK, Chaudhary P, Martenson ME. Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain. Eur J Neurosci 2004;19:1343-1351.
Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch 2005;451:143-150.
Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M. Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 2001;276:35361-35367.
Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, et al. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 2004;24:8678-8689.
Immke DC, McCleskey EW. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 2003;37:75-84.
Paukert M, Babini E, Pusch M, Grunder S. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 2004;124:383-394.
Zhang P, Canessa CM. Single channel properties of rat acid-sensitive ion channel-1alpha, -2a, and -3 expressed in Xenopus oocytes. J Gen Physiol 2002;120:553-566.
Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002;34:463-477.
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002;82:735-767.
Mercado F, Lopez IA, Acuna D, Vega R, Soto E. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 2006;96:1615-1624.
Mercado F, Vega R, Soto E. Canales iónicos sensibles a la concentración extracelular de protones: estructura, función, farmacología y fisiopatología. Rev Neurol 2005;41:667-675.
Vukicevic M, Kellenberger S. Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 2004;287:C682-C690.
Krishtal OA, Pidoplichko VI. A “receptor” for protons in small neurons of trigeminal ganglia: possible role in nociception. Neurosci Lett 1981;24:243-246.
Sutherland SP, Benson CJ, Adelman JP, McCleskey EW. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A 2001; 98:711-716.
Xiong ZG, Chu XP, Simon RP. Ca2+ -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol 2006; 209:59-68.
Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 2003;23:5496-5502.
Garza A, Chávez H, Vega R, Soto E. Mecanismos celulares y moleculares de la neurotoxicidad por plomo. Salud Mental 2005;28:48-58.
Salceda E, Garateix A, Soto E. The sea anemone toxins BgII and BgIII prolong the inactivation time course of the tetrodotoxin-sensitive sodium current in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 2002;303:1067-1074.
Soto E, Limon A, Ortega A, Vega R. Características morfológicas y electrofisiológicas de las neuronas del ganglio vestibular en cultivo. Gac Med Mex 2002;138:1-13.
Limon A, Perez C, Vega R, Soto E. Ca2+-activated K+-current density is correlated with soma size in rat vestibular-afferent neurons in culture. J Neurophysiol 2005;94:3751-3761.
Standker L, Beress L, Garateix A, Christ T, Ravens U, Salceda E, et al. A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation. Toxicon 2006;48:211-220.
Salceda E, Garateix A, Aneiros A, Salazar H, Lopez O, Soto E. Effects of ApC, a sea anemone toxin, on sodium currents of mammalian neurons. Brain Res 2006;1110:136-143.
Poirot O, Berta T, Decosterd I, Kellenberger S. Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 2006;576:215-234.
Wang W, Duan B, Xu H, Xu L, Xu TL. Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 2006;281:2497-2505.
Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit 2006;12:RA57-RA65.
Magyar JS, Weng TC, Stern CM, Dye DF, Rous BW, Payne JC et al. Reexamination of lead(II) coordination preferences in sulfur-rich sites: Implications for a critical mechanism of lead poisoning. J Am Chem Soc 2005;127:9495-9505.
Bouton CM, Frelin LP, Forde CE, Arnold GH, Pevsner J. Synaptotagmin I is a molecular target for lead. J Neurochem 2001;76:1724-1735.
Ghering AB, Jenkins LM, Schenck BL, Deo S, Mayer RA, Pikaart MJ et al. Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins. J Am Chem Soc 2005;127:3751-3759.
Habermann E, Crowell K, Janicki P. Lead and other metals can substitute for Ca2+ in calmodulin. Arch Toxicol 1983;54:61-70.
Markovac J, Goldstein GW. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 1988; 334:71-73.
Westerink RH, Klompmakers AA, Westenberg HG, Vijverberg HP. Signaling pathways involved in Ca2+- and Pb2+-induced vesicular catecholamine release from rat PC12 cells. Brain Res 2002;957:25-36.
Westerink RH, Vijverberg HP. Ca2+ -independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+. J Neurochem 2002;80:861-873.