2008, Número 1
<< Anterior Siguiente >>
Rev Mex Cardiol 2008; 19 (1)
El sistema renina-angiotensina-aldosterona y su papel funcional más allá del control de la presión arterial
Santeliz CH, Romano EL, González CA, Hernández y HH
Idioma: Español
Referencias bibliográficas: 66
Paginas: 21-29
Archivo PDF: 503.80 Kb.
RESUMEN
A partir de que el reverendo Stephen Hales (1677-1761) realizó su publicación sobre la medición de presiones arteriales en animales en 1733, se inició el interés por medir este parámetro clínico en humanos y fue Samuel Von Basch, en 1883, quien ideó el primer sistema no invasivo para la medición de la presión arterial (el esfigmomanómetro), el cual fue modificado más tarde por Riva Rocci en 1896.
Esta forma de medición la complementó más tarde Korotkoff, patólogo ruso, quien introdujo la técnica de determinar la presión arterial por medio de la auscultación en 1905.
Este fabuloso logro de medir la presión sanguínea permitió relacionar las observaciones de Bright entre los años 1827 y 1836, sobre pacientes con riñones enfermos que presentaban anomalías cardiovasculares. Con base en estas primeras observaciones, se inició toda una cascada de estudios que trataron de determinar el papel real de la hipertensión en la salud pública; en 1913 Jeneway descubrió que ésta se asociaba a una mayor morbimortalidad relacionada principalmente con falla cardiaca, accidente cerebrovascular y uremia. Poco a poco se fue profundizando en la etiopatogenia de la hipertensión arterial y de los muchos mecanismos que contribuyen a su prevalencia. Uno de los más estudiados fue el sistema renina-angiotensina-aldosterona, el cual inclusive en la época actual no deja de sorprendernos por las nuevas implicaciones que tiene, no sólo en la presión arterial, sino también en otras vías, tanto metabólicas como proinflamatorias. En el presente artículo tratamos de englobar las funciones básicas y las nuevas funciones observadas del sistema renina angiotensina aldosterona, enfocándonos primordialmente en la Enzima Convertidora de Angiotensina (ECA), angiotensina II (AGII) y los receptores de la angiotensina tipo 1, tipo 2 y tipo 4 (AT-1, AT-2, y AT-4 respectivamente).
REFERENCIAS (EN ESTE ARTÍCULO)
Oparil S, Weber AM. Hipertensión «El Riñón, de Brenner y Rector». Ed: McGraw-Hill Interamericana año 2004: 1-4, 77-94.
Ruskin A. Classics in arterial hypertension. Sprinfield, IL Charles C Thomas, 1956: 164-274.
Janeway TC. A clinical study of hypertensive cardiovascular disease. Arch Intern Med 1913; 12: 755.
Goldblatt H, Lynch J, Hanzal RF et al. Studies on experimental Hypertension. I: The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 1934; 59: 347-379.
Johnston CI. Biochemistry and pharmacology of the renin-angiotensin system. Drugs 1990; 39: 21-31.
Skidgel RA, Erdos EG. Biochemistry of angiotensin I-converting enzyme. In: Nicholls MG, Robertson JS (eds). The renin-angiotensin system. London, Gower Medical, 1993: 10.1-10.10.
Perich RB, Jackson B, Rogerson FM et al. Two binding sites on angiotensin converting enzyme: evidence from radioligand binding studies. Molecular Pharmacol 1992; 42: 286-293.
Wei L, Alhenc-Gelas F, Corvol P, Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem 1991; 266: 9002-9008.
Kumar RS, Kusari J, Roy S et al. Structure of testicular angiotensin-converting enzyme: A segmental isozyme. J Biol Chem 1989; 264: 16754-16758.
Wei L, Alhenc-Gelas F, Soubrier F et al. Expression and characterization of recombinant human angiotensin I-converting enzyme: evidence for a C-terminal transmembrane anchir and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem 1991; 266: 5540-5546.
Beldent V, Michaud A, Wei L et al. Proteolitic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem 1993; 268: 26428-26434.
Esther CR, Marino EM, Howard TE et al. The Critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest 1997; 99: 2375-2385.
Erdos EG. Angiotensin I-converting enzyme and the changes in our concepts throught the years. Lewis K. Dahl memorial lecture. Hypertension 1990; 16: 363-370.
Skidgel RA, Erdos EG. The broad substrate specificity of human angiotensin I-converting enzyme. Clin Exper Hyperten 1987; A9: 243-259.
Isaac RE, Schoofs L, Williams TA et al. Anovel peptide-processing activity of insect peptidyl-dipeptidase A (angiotensin I-converting enzyme): The hydrolysis of lysyl-arginine and arginyl-arginine from the C-terminus of an insect prohormone peptide. Biochem J 1998; 330: 61-65.
Isaac RE, Schoofs L, Williams TA et al. Toward a role for angiotensin-converting enzyme in insects. Ann N Y Acad Sci 1998; 839: 288-292.
Yamada H, Fabris B, Allen AM et al. Localization of angiotensin-converting enzyme in the rat heart. Circ Res 1991; 68: 651-665.
Ji H, Sandberg K, Catt KJ. Novel angiotensin II antagonists distinguish amphibian from mammalian angiotensin II receptors expressed in xenopus laevis oocytes. Mol Pharmacol 1991; 39: 120-123.
Sanberg K. Structural analysis and regulation of angiotensin II receptors. Trends Endocrinol Metab 1994; 5: 28-35.
Steckelings U, Lebrum C, Qadri F et al. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol 1992; 19(Suppl 6): S72-S79.
de Gasparo M, Bottari S, Levens NR. Characteristics of angiotensin II receptors and their role in cell and organ physiology. In: Laragh JH, Brenner BM (eds). Hypertension: Physiology, diagnosis, and management. New York, Raven, 1994: 1695-1720.
Ichiki T, Herold CL, Kambayashi Y et al. Cloning of the cDNA and the genomic DNA of the mouse angiotensin II type 2 receptor. Biochim Biophys Acta 1994; 1189: 247-250.
Dzau VJ, Horiuchi M. Differential expression of angiotensin receptor subtypes in the myocardium: A hypothesis. Eur Heart J 1996; 17: 978-980.
Gallinat S, Yu MH, Zhu YZ et al. Upregulation of angiotensin receptors after myocardial infarction and sciatic nerve transection: A common expression pattern. (Abstract) Hypertension 1997; 30: 999.
Kang J, Posner P, Sumners C. Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol Cell Physiol 1994; 36: C1389-C1397.
Unger T, Chung O, Csikos T et al. Angiotensin receptors. J Hypertens 1996; 14: S95-S103.
Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium diverse signals and effects. Hypertension 2005; 45: 163-169.
Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators [comment]. [erratum appears in 2000 May 4; 342(18): 1376]. N Engl J Med 2000; 342: 145-153.
Berk BC. Angiotensin type 2 receptor (AT2R): a challenging twin. Science STKE 2003; 2003: PE16.
Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM. Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 1997; 81: 970-976.
Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 1999; 84: 1043-1049.
Marrero MB, Venema VJ, Ju H, He H, Liang H, Caldwell RB, Venema RC. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors. Biochem J 1999; 343(Pt 2): 335-340.
Ohashi H, Takagi H, Oh H, Suzuma K, Suzuma I, Miyamoto N, Uemura A, Watanabe D, Murakami T, Sugaya T, Fukamizu A, Honda Y. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94: 785-793.
Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993; 87: 1969-1973.
Kerins DM, Hao Q, Vaughan DE. Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 1995; 96: 2515-2520.
Nishimura H, Tsuji H, Masuda H, Nakagawa K, Nakahara Y, Kitamura H, Kasahara T, Sugano T, Yoshizumi M, Sawada S, Nakagawa M. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb Haemost 1997; 77: 1189-1195.
Mehta JL, Li DY, Yang H, Raizada MK. Angiotensin II and IV stimulate expression and release of plasminogen activator inhibitor-1 in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol 2002; 39: 789-794.
Kramer C, Sunkomat J, Witte J, Luchtefeld M, Walden M, Schmidt B, Boger RH, Forssmann WG, Drexler H, Schieffer B. Angiotensin II receptor independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res 2002; 90: 770-776.
Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest 2002; 82: 747-756.
Page EL, Robitaille GA, Pouyssegur J, Richard DE. Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 2002; 277: 48403-48409.
Aguilera G, Kapur S, Feuillan P, Sunar-Akbasak B, Bathia AJ. Developmental changes in angiotensin II receptor subtypes and AT1 receptor mRNA in rat kidney. Kidney Int 1994; 46: 973-979.
Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, Van Kats JP, Saxena PR, Danser AH. Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 2004.
Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995; 377: 748-750.
Ohkubo N, Matsubara H, Nozawa Y, Mori Y, Murasawa S, Kijima K, Maruyama K, Masaki H, Tsutumi Y, Shibazaki Y, Iwasaka T, Inada M. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 1997; 96: 3954-3962.
Wharton J, Morgan K, Rutherford RA, Catravas JD, Chester A, Whitehead BF, De Leval MR, Yacoub MH, Polak JM. Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. J Pharmacol Exp Ther 1998; 284: 323-336.
Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 2004; 110: 843-848.
Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 1999; 104: 925-935.
Yan C, Kim D, Aizawa T, Berk BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 2003; 23: 26-36.
Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A. Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 1998; 31: 342-348.
Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 2001; 104: 2338-2343.
Molina CR, Andresen JW, Rapoport RM, Waldman S, Murad F. Effect of in vivo nitroglycerin therapy on endothelium-dependent and independent vascular relaxation and cyclic GMP accumulation in rat aorta. J Cardiovasc Pharmacol. 1987; 10: 371-378.
Gendron L, Oligny JF, Payet MD, Gallo-Payet N. Cyclic AMP independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108–15 cells. J Biol Chem 2002; 2: 2.
Feng YH, Sun Y, Douglas JG. Gbeta gamma -independent constitutive association of Galpha s with SHP- 1 and angiotensin II receptor AT2 is essential in AT2-mediated ITIM- independent activation of SHP-1. Proc Natl Acad Sci S A 2002; 99: 12049-12054.
AbdAlla S, Lother H, Abd El Tawaab A, Quitterer U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 2001; 15: 15.
Walther T, Menrad A, Orzechowski HD, Siemeister G, Paul M, Schirner M. Differential regulation of in vivo angiogenesis by angiotensin II receptors. FASEB J 2003; 17: 2061-2067.
Moeller I, Clune EF, Fennessy PA, Bingley JA, Albiston AL, Mendelsohn FA, Chai SY. Up regulation of AT4 receptor levels in carotid arteries following balloon injury. Regul Pept 1999; 83: 25-30.
Li YD, Block ER, Patel JM. Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 2002; 283: L707-L716.
Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano S, Plaza JJ, Egido J. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 2001; 38: 1382-1387.
Cole JM, Khokhlova N, Sutliff RL, Adams JW, Disher KM, Zhao H, Capecchi MR, Corvol P, Bernstein KE. Mice lacking endothelial ACE: normal blood pressure with elevated angiotensin II. Hypertension 2003; 41: 313-321.
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:E1–E9.
Ferrario CM. Contribution of angiotensin-(1–7) to cardiovascular physiology and pathology. Curr Hypertens Rep 2003; 5: 129-134.
Li P, Fukuhara M, Diz DI, Ferrario CM, Brosnihan KB. Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)- induced vasoconstriction in canine coronary arteries and human platelet aggregation. J Pharmacol Exp Ther 2000; 292: 238-246.
Watanabe T, Berk B. Losartan stimulates phosphorylation of Akt and endothelial nitric oxide synthase in endothelial cells independently of angiotensin type 1 receptor blockade. Circulation 2004; 110: 1124 (Abstract).
Barrios V, Tomas JP, Ruilope LM. Avances en el tratamiento de la hipertensión arterial con antagonistas de los receptores de la angiotensina. Rev Costarric Cardiol v.4 n.3 Dic.2002.
Kjeldsen SE, Dahlof B, Devereux RB, Julios S et al. For the LIFE Study Group. Lowering of blood pressure and predictors of response in patients with left ventricular hypertrophy: the LIFE study. Am J Hypertens 2000; 13: 899-906.
Hansson L, Lithell H, Skoog L, Baro F et al. Study on Cognition and Prognosis in the Elderly (SCOPE): baseline characteristics. Blood Press 2000; 9: 146-151.