2022, Número 3
Evaluación de la contaminación por arsénico de la leche y productos lácteos
Idioma: Ingles.
Referencias bibliográficas: 22
Paginas:
Archivo PDF: 262.47 Kb.
RESUMEN
Introducción: La leche y los productos lácteos son nutritivos y pueden desempeñar un papel importante en una dieta saludable. La seguridad de la leche disminuye con el aumento de la concentración de arsénico. Los límites máximos de residuos de arsénico son 500 ppb.Objetivos: Evaluar el estado de contaminación por arsénico de la leche y los productos lácteos producidos y procesados en algunas provincias y ciudades de Vietnam.
Métodos: Se analizaron un total de 367 muestras. Las muestras se digirieron antes del análisis, para eliminar los compuestos orgánicos y se determinó el contenido total de arsénico mediante espectrofotometría de absorción atómica.
Resultados: Las concentraciones promedio de arsénico total en la leche líquida fueron 139,32 ppb; en el yogur, 169,81 ppb; en el queso, 221,38 ppb; en el pastel de leche, 232,80 ppb; y en la leche en polvo, 35,43 ppb, respectivamente.
Conclusión: Las concentraciones de arsénico en algunas muestras superan los niveles máximos permitidos según la normativa nacional.
REFERENCIAS (EN ESTE ARTÍCULO)
Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO; 2011. [access: 01/01/2011]. Available from: Available from: https://apps.who.int/iris/handle/10665/44520 1.
Hameed A, Akhtara S, Amjada A, Naeema I, Tariqa M. Comparative assessment of arsenic contamination in raw milk, infant formulas and breast milk. Journal of Dairy & Veterinary Sciences. 2019 [access: 10/07/2019]; 13(1): 555851. Available from: Available from: https://juniperpublishers.com/jdvs/pdf/JDVS.MS.ID.555851.pdf 3.
Motaghi M, Ziarati P. Adsorptive Removal of Cadmium and Lead from Oryza Sativa Rice by Banana Peel as Bio-Sorbent. Biomed Pharmacol J. 2016 [access: 13/06/2016]; 9(2):739-49. Available from: Available from: https://biomedpharmajournal.org/vol9no2/adsorptive-removal-of-cadmium-and-lead-from-oryza-sativa-rice-by-banana-peel-as-bio-sorbent/ 4.
Arianejad M, Alizadeh M, Bahrami A, Arefhoseini SR. Levels of Some Heavy Metals in Raw Cow's Milk from Selected Milk Production Sites in Iran: Is There any Health Concern? Health Promot Perspect. 2015 [access: 25/10/2015]; 5(3):176-82. Available from: Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667257/ 5.
Ahmad I, Zaman A, Samad N, Ayaz MM, Rukh S, Akbar A, Ullah N. Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, buffalo and goat from various areas of Khyber-Pakhtunkhwa (KPK), Pakistan. J Anal Bioanal Tech. 2017 [access: 22/06/2017]; 8(3):100367. Available from: Available from: https://www.omicsonline.org/open-access/atomic-absorption-spectrophotometery-detection-of-heavy-metals-in-milk-ofcamel-cattle-buffalo-and-goat-from-various-areas-of-khybe-2155-9872-1000367.php?aid=90806 7.
Li P, Pan Y, Fang Y, Du M, Pei F, Shen F, et al. Concentrations and health risks of inorganic arsenic and methylmercury in shellfish from typical coastal cities in China: a simultaneous analytical method study. Food Chemistry. 2019 [access: 18/11/2018]; 278: 587-92. Available from: Available from: https://www.sciencedirect.com/science/article/abs/pii/S0308814618320302 8.
Castro-González NP, Calderón-Sánchez F, Castro de Jesús J, Moreno-Rojas R, Tamariz-Flores JV, Pérez-Sato M, et al. Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Additives & Contaminants Part B. 2017 [access: 10/11/2017]; 11(1): 33-36. Available from: Available from: https://pubmed.ncbi.nlm.nih.gov/29086632 12.
Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, et al. Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem. 2014 [access: 15/03/2014]; 147:220-4. Available from: Available from: https://pubmed.ncbi.nlm.nih.gov/24206709/ 14.
Ibrahim AS, Saad MF, Hafiz NM. Toxic Elements in Dried Milk and Evaluation of their Dietary Intake in Infant Formula. International Journal of Veterinary Science. 2020 [access: 11/07/2020]; 9(4): 563-567. Available from: Available from: https://www.researchgate.net/publication/354193470_Toxic_Elements_in_Dried_Milk_and_Evaluation_of_their_Dietary_Intake_in_Infant_Formula 15.
Salah FAAE, Esmat IA, Mohamed AB. Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate. International Food Research Journal. 2013 [access: 01/01/2013]; 20(4): 1807-12. Available from: Available from: https://www.researchgate.net/publication/256980744_Heavy_metals_residues_and_trace_elements_in_milk_powder_marketed_in_Dakahlia_Governorate 16.
Ngoc NTM, Chuyen NV, Thao NT, Duc NQ, Trang NTT, Binh NTT, et al. Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environmental health insights. 2020 [access: 02/04/2020]; 14:1-9. Available from: Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223865/ 19.
Uddh-Söderberga TE, Gunnarssona SJ, Hogmalmb KJ, Lindegård MIBG, Augustsson ALM. An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites. Science of the Total Environment. 2015 [access: 07/07/2015]; 536:189-197. Available from: Available from: https://www.sciencedirect.com/science/article/abs/pii/S0048969715303661?via%3Dihub 21.
World Health Organization, Food and Agriculture Organization of the United Nations. Codex Alimentarius General standard for contaminants and toxins in food and feed. CXS 193-1995, Amended; 2019. [access: 29/10/2019]. Available from: Available from: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf 22.