2024, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2024; 43 (2)
Glicosilación viral
Gallegos VIB, Vázquez AV, Sánchez CMD, López CMS, Santiago OBL, Hernández CPA
Idioma: Español
Referencias bibliográficas: 45
Paginas: 84-95
Archivo PDF: 654.43 Kb.
RESUMEN
Los glicanos son uno de los componentes celulares más importantes, sin
embargo, debido a su diversidad estructural, sus funciones no han sido
completamente estudiadas. La glicosilación es una modificación importante
de muchas proteínas. Los virus dependen de la glicosilación para
realizar funciones biológicas. Se han descrito múltiples funciones de la
glicosilación de proteínas virales durante infecciones como el dengue, el
Zika, la influenza, el virus de la inmunodeficiencia humana, y los coronavirus.
En esta revisión, se explicará el proceso de glicosilación de
proteínas virales y su papel en los procesos patológicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Varki A, Gagneux P. Biological functions ofglycans. En: Varki A, Cummings RD, Esko JD,Stanley P, Hart GW, Aebi M, Mohnen D,Kinoshita T, Packer NH, Prestegard JH, SchnaarRL y Seeberger PH editores. Essentials ofGlycobiology, 4ta edicion. Cold Spring ColdSpring Harbor New York: Harbor LaboratoryPress; 2015. p. 77–88
Johannssen T, Lepenies B. Glycan-based celltargeting to modulate immune responses. TrendsBiotechnol. 2017; 35:334–346.
Bagdonaite I, Wandall HH. Global aspects ofviral glycosylation. Glycobiology. 2018; 28:443–467
Watanabe Y, Bowden TA, Wilson IA,Crispin M. Exploitation of glycosylation inenveloped virus pathobiology. Biochim BiophysActa. 2019; 1863(10):1480–1497
Suzuki T, Kitajima K, Inoue S, Inoue Y. Nglycosylation/deglycosylation as a mechanism forthe post-translational modification/remodificationof proteins. Glycoconj J. 1995; 12:183-193.
B S GK, Surolia A. Comprehensive analysisof α 2-3-linked sialic acid specific Maackiaamurensis leukagglutinin reveals differentiallyoccupied N-glycans and C-terminal processing.Int J Biol Macromol. 2017; 94:114-121.
Burchell JM, Beatson R, Graham R, TaylorPapadimitriou J, Tajadura-Ortega V. O-linkedmucin-type glycosylation in breast cancer.Biochem Soc Trans. 2018; 46:779-788.
Bennett E, Mandel U, Clausen H, Gerken T,Fritz T y Tabak, L. Control of mucin type Oglycosylation:A classification of the polypeptideGalNAc-transferase gene family. Glycobiology.2012; 22:736–756.
Gubler, DJ. Dengue/dengue haemorrhagicfever: history and current status. En: Bock G,Goode J editores. New Treatment Strategies forDengue and Other Flaviviral Diseases: NovartisFoundation Symposium 277. 1era edición.Chichester UK: John Wiley & Sons Ltd; 2006. p.3-22.
Chang CJ, Luh HW, Wang SH, Lin HJ, LeeSC, Hu ST. The heterogeneous nuclearribonucleoprotein K (hnRNP K) interacts withdengue virus core protein. DNA and cell biology.2001; 20(9), 569-577.
Yap SS, Nguyen-Khuong T, Rudd PM,Alonso S. Dengue virus glycosylation: what do weknow? Frontiers in microbiology. 2017; 8, 1415.
Alen MM, Dallmeier K, Balzarini J, Neyts J,Schols D. Crucial role of the N-glycans on theviral E-envelope glycoprotein in DC-SIGNmediateddengue virus infection. Antiviralresearch. 2012; 96(3), 280-287.
Muñoz LS, Parra B, Pardo CA. NeurovirusesEmerging in the Americas Study. Neurologicalimplications of Zika virus infection in adults. TheJournal of infectious diseases. 2017;216(suppl_10), S897-S905.
Wen D, Li S, Dong F, Zhang Y, Lin Y, WangJ, Zheng A. N-glycosylation of viral E protein isthe determinant for vector midgut invasion byflaviviruses. Mbio. 2018; 9(1), e00046-18.
Maharaj PD, Langevin SA, Bolling BG,Andrade CC, Engle XA, Ramey WN, Bosco-Lauth A, Bowen RA, Sanders TA, Huang CY,Reisen WK, Brault AC. N-linked glycosylation ofthe West Nile virus envelope protein is not arequisite for avian virulence or vectorcompetence. PLoS Neglected Tropical Diseases.2019; 13(7), e0007473.
Martina BE, Koraka P, Van den Doel P,Rimmelzwaan GF, Haagmans BL, Osterhaus AD.DC-SIGN enhances infection of cells withglycosylated West Nile virus in vitro and virusreplication in human dendritic cells inducesproduction of IFN-α and TNF-α. Virus research.2008; 135(1), 64-71.
Moudy RM, Payne AF, Dodson BL, KramerLD. Requirement of glycosylation of West Nilevirus envelope protein for infection of, but notspread within, Culex quinquefasciatus mosquitovectors. The American journal of tropicalmedicine and hygiene. 2011; 85(2), 374.
Shirato K, Miyoshi H, Goto A, Ako Y, UekiT, Kariwa, H, Takashima I. Viral envelope proteinglycosylation is a molecular determinant of theneuroinvasiveness of the New York strain of WestNile virus. Journal of General Virology. 2004; 85,3637-3645.
Hanna SL, Pierson TC, Sanchez MD, AhmedAA, Murtadha MM, Doms RW. N-linkedglycosylation of west nile virus envelope proteinsinfluences particle assembly and infectivity.Journal of virology. 2005; 79(21), 13262-13274.
Mathys L, François K O, Quandte M,Braakman I, Balzarini J. Deletion of the highlyconserved N-glycan at Asn260 of HIV-1 gp120affects folding and lysosomal degradation ofgp120, and results in loss of viral infectivity. PloSone. 2014; 9(6), e101181.
Auwerx J, François KO, Covens K, VanLaethem K, Balzarini J. Glycan deletions in theHIV-1 gp120 V1/V2 domain compromise viralinfectivity, sensitize the mutant virus strains tocarbohydrate-binding agents and represent aspecific target for therapeutic intervention.Virology. 2008; 382(1), 10-19.
Mathys L, Balzarini J. Several N-glycans onthe HIV envelope glycoprotein gp120 preferentiallylocate near disulphide bridges and arerequired for efficient infectivity and virustransmission. PLoS One. 2015; 10(6), e0130621.
François KO, Balzarini J. The highlyconserved glycan at asparagine 260 of HIV-1gp120 is indispensable for viral entry. Journal ofBiological Chemistry. 2011; 286(50), 42900-42910.
Quiñones-Kochs MI, Buonocore L, Rose JK.Role of N-linked glycans in a humanimmunodeficiency virus envelope glycoprotein:effects on protein function and the neutralizingantibody response. Journal of virology. 2002;76(9), 4199-4211.
Schulze IT. Effects of glycosylation on theproperties and functions of influenza virushemagglutinin. Journal of Infectious Diseases.1997; 176(Supplement_1), S24-S28.
Roberts PC, Garten Wolfgang, Klenk HD.Role of conserved glycosylation sites inmaturation and transport of influenza A virushemagglutinin. Journal of virology. 1993; 67(6),3048-3060.
Gambaryan AS, Marinina VP, Tuzikov AB,Bovin NV, Rudneva I.A, Sinitsyn BV,Matrosovich MN. Effects of host-dependentglycosylation of hemagglutinin on receptorbindingproperties of H1N1 human influenza Avirus grown in MDCK cells and in embryonatedeggs. Virology. 1998; 247(2), 170-177.
Deshpande KL, Fried VA, Ando M, WebsterRG. Glycosylation affects cleavage of an H5N2influenza virus hemagglutinin and regulatesvirulence. Proceedings of the National Academyof Sciences. 1987; 84(1), 36-40.
Reading PC, Pickett DL, Tate MD, WhitneyPG, Job ER, Brooks AG. Loss of a single N-linkedglycan from the hemagglutinin of influenza virusis associated with resistance to collectins andincreased virulence in mice. Respiratory research.2009; 10(1), 1-11.
Wagner R, Wolff T, Herwig A, Pleschka S,Klenk HD. Interdependence of hemagglutininglycosylation and neuraminidase as regulators ofinfluenza virus growth: a study by reversegenetics. Journal of virology. 2000; 74(14), 6316-6323.
Li SHENGQIANG, Schulman J, Itamura S,Palese P. Glycosylation of neuraminidasedetermines the neurovirulence of influenzaA/WSN/33 virus. Journal of virology. 1993;67(11), 6667-6673.
Lennemann NJ, Rhein BA, Ndungo E,Chandran K, Qiu X, Maury W. Comprehensivefunctional analysis of N-linked glycans on Ebolavirus GP1. MBio. 2014; 5(1), e00862-13.
Lennemann NJ, Walkner M, Berkebile AR,Patel N, Maury W. The role of conserved N-linkedglycans on Ebola virus glycoprotein 2. TheJournal of infectious diseases. 2015;212(suppl_2), S204-S209.
Shajahan A, Archer-Hartmann S, SupekarNT, Gleinich AS, Heiss C, Azadi P. Comprehensivecharacterization of N-and Oglycosylationof SARS-CoV-2 human receptorangiotensin converting enzyme 2. Glycobiology.2021; 31(4), 410-424.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S,Wang, X. Structure of the SARS-CoV-2 spikereceptor-binding domain bound to the ACE2receptor. 2020; nature, 581(7807), 215-220.
Kornfeld R, Kornfeld S. Assembly ofasparagine-linked oligosaccharides. Annual reviewof biochemistry. 1985; 54(1), 631-664.
Galili U. Natural anti-carbohydrate antibodiescontributing to evolutionary survival ofprimates in viral epidemics? Glycobiology. 2016;26(11), 1140-1150.
Shi X y Jarvis DL. Protein N-glycosylation inthe baculovirus-insect cell system. Current drugtargets. 2007; 8(10), 1116-1125.
Mohan GS, Li W, Ye L, Compans RW, Yang,C. Antigenic subversion: a novel mechanism ofhost immune evasion by Ebola virus. PLoSpathogens. 2012; 8(12), e1003065.
Cohen-Dvashi, H, Cohen N, Israeli H,Diskin, R. Molecular mechanism for LAMP1recognition by Lassa virus. Journal of virology.2015; 89(15), 7584-7592.
Avirutnan, P, Zhang L, Punyadee N,Manuyakorn A, Puttikhunt C, Kasinrerk W,Diamond MS. Secreted NS1 of dengue virusattaches to the surface of cells via interactions withheparan sulfate and chondroitin sulfate E. PLoSpathogens. 2007; 3(11), e183.
Thiemmeca S, Tamdet C, Punyadee N,Prommool T, Songjaeng A, Noisakran S,Avirutnan P. Secreted NS1 protects dengue virus frommannose-binding lectin–mediated neutralization.The Journal of Immunology. 2016; 197(10), 4053-4065.
Korber B, Gaschen B, Yusim K,Thakallapally R, Kesmir C, Detours, V.Evolutionary and immunological implications ofcontemporary HIV-1 variation. British medicalbulletin. 2001; 58(1), 19-42.
Wyatt R, Kwong PD, Desjardins E, SweetRW, Robinson J, Hendrickson WA, Sodroski JG.The antigenic structure of the HIV gp120envelope glycoprotein. 1998; Nature, 393(6686),705-711.
Xu R, Ekiert DC, Krause JC, Hai R, Crowe JrJE, Wilson IA. Structural basis of preexistingimmunity to the 2009 H1N1 pandemic influenzavirus. Science. 2010; 328(5976), 357-360.