2024, Número 2
<< Anterior Siguiente >>
Rev Biomed 2024; 35 (2)
Daño genético en células sanguíneas humanas expuestas a lámparas germicidas y citoprotección del ácido ascórbico
Reynoso-Silva M, Alvarez-Moya C, Barrientos-Ramírez L, Vargas-Radillo JJ, Rodríguez-Macías R
Idioma: Ingles.
Referencias bibliográficas: 35
Paginas: 59-66
Archivo PDF: 185.62 Kb.
RESUMEN
Introducción. Las lámparas germicidas tienen un rango de longitud
de onda de 200-280 nm y pueden afectar la integridad del ADN de
personas que manipulan erróneamente estos equipos. Los linfocitos
humanos son excelentes biomonitores de daño genético y ampliamente
utilizados con la prueba del cometa.
Objetivo. Evaluación de genotoxicidad en células sanguíneas humanas
expuestas a radiación UV (254 nm) emitida por lámparas germicidas y
el efecto citoprotector del ácido ascórbico usando la prueba del cometa.
Material y métodos. Laminillas conteniendo linfocitos inmersos
en gel de agarosa fueron expuestos a radiación UV-C (254 nm) por
periodos de 5, 10 y 15 minutos a una distancia de 70 cm. El efecto
antigenotóxico se determinó en células expuestas a UV-C durante 5
minutos a una distancia de 70 cm, posteriormente las laminillas se
sometieron a una solución de ácido ascórbico por periodos de 5, 10
y 15 mM durante dos horas. En ambos casos se cuantificó el daño
genético mediante la prueba cometa con el uso de tres parámetros:
longitud de la cola, momento de la cola y grupos de migración.
Resultados. Los tres parámetros detectaron actividad genotóxica
significativa (p‹0.05) en los tiempos de exposición a UV-C y efecto
citoprotector del ácido ascórbico (p‹0.05).
Conclusiones. El manejo de lámparas germicidas UV-C es
frecuentemente erróneo y peligroso para personas u organismos
expuestos. Estos datos sugieren que el ácido ascórbico aumenta la
protección del ADN en las células expuestas a la radiación UV-C.
REFERENCIAS (EN ESTE ARTÍCULO)
Phillips DH, Arlt VM. Genotoxicity: damage to DNAand its consequences. Mol Clin Environ Toxicol. 2009;1: 87-110.
Maluf SW, Passos DF, Bacelar A, Speit G, Erdtmann B.Assessment of DNA damage in lymphocytes of workersexposed to X‐radiation using the micronucleus test andthe comet assay. Environ Mol Mutagen. 2001; 38(4):
311-315. https://doi.org/10.1002/em.100293. Lee E, Oh E, Lee J, Sul D, Lee J. Use of the tail momentof the lymphocytes to evaluate DNA damage in humanbiomonitoring studies. Toxicol Sci. 2004; 81(1): 121-132. https://doi.org/10.1093/toxsci/kfh184
Maluf SW. Monitoring DNA damage following radiationexposure using cytokinesis–block micronucleus methodand alkaline single-cell gel electrophoresis. Clin ChimActa. 2004;347(1-2): 15-24. https://doi.org/10.1016/j.cccn.2004.04.010
Narita K, Asano K, Morimoto Y, Igarashi T, HamblinMR, Dai T, et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcusaureus infection in mouse wounds. J Photoch PhotobiolB. 2018;178: 10-18. https://doi.org/10.1016/j.jphotobiol.2017.10.030
Byrns G, Barham B, Yang L, Webster K, Rutherford G,Steiner G, et al. The uses and limitations of a hand-heldgermicidal ultraviolet wand for surface disinfection. JOccup Environ Hyg. 2017; 14(10): 749–757. https://doi.org/10.1080/15459624.2017.1328106
Card KJ, Crozier D, Dhawan A, Dinh M, Nathan D,Farrokhian N, et al. (2020). UV Sterilization of PersonalProtective Equipment with Idle Laboratory BiosafetyCabinets During the COVID-19 Pandemic. MedRxiv.Preprint.https://www.medrxiv.org/content/10.1101/2020.03.25.20043489v2
Rutala WA, Gergen MF, Weber DJ. RoomDecontamination with UV Radiation. Infect ContHosp Ep. 2010; 31(10): 1025–1029. https://doi.org/10.1086/656244
Leung KCP, Ko TCS. Improper Use of the GermicidalRange Ultraviolet Lamp for Household DisinfectionLeading to Phototoxicity in COVID-19 Suspects.Cornea. 2020; 40(1): 121-122. https://doi.org/10.1097/ico.00000002397
Urban L, Charles F, de Miranda MRA, Aarrouf J.Understanding the physiological effects of UV-C lightand exploiting its agronomic potential before and afterharvest. Plant Physiol Bioch. 2016; 105: 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004
US Environmental Protection Agency. Ultravioletdisinfection guidance manual for the final long term 2enhanced surface water treatment rule. United StatesEnvironmental Protection Agency, Office of Water(4601) EPA 815-R06-007. Washington: USEPA;2006. http://www.epa.gov/safewater/disinfection/lt2/compliance.html
Zaffina S, Camisa V, Lembo M, Vinci MR, Tucci MG,Borra M, et al. Accidental Exposure to UV RadiationProduced by Germicidal Lamp: Case Report and RiskAssessment. Photoch Photobio. 2012;88(4):1001-1004.https://doi.org/10.1111/j.1751-1097.2012.01151.x
International Commission on Illumination. UV-Cphotocarcinogenesis risks from germicidal lamps |CIE Vienna. Austria: Commission International DeL’Eclairage; 2010. http://cie.co.at/publications/uv-cphotocarcinogenesis-risks-germicidal-lamps
Chatterjee N, Walker GC. Mechanisms of DNA damage,repair, and mutagenesis. Environ Mol Mutagen.2017;58(5): 235–263. https://doi.org/10.1002/em.22087
Zúñiga GZ. Sistemas de detección de daño genético.In: Alvarez-Moya C. Genética, Ambiente y Salud.Guadalajara: Editorial Universidad de Guadalajara;2013. P. 55-63.
Glei M, Schneider T, Schlörmann W. Comet assay: anessential tool in toxicological research. Arch Toxicol.2016; 90(10): 2315-2336. https://doi.org/10.1007/s00204-016-1767-y
Vodicka P, Vodenkova S, Opattova A, Vodickova L.DNA damage and repair measured by comet assay incancer patients. Mutat Res/Genet Toxi En. 2019; 843:95-110. https://doi.org/10.1016/j.mrgentox.2019.05.009
Reynoso-Silva M, Álvarez-Moya C, Ramírez-VelascoR, Sámano-León AG, Arvizu-Hernández E, Castañeda-Vásquez H, et al. Migration Groups: A Poorly ExploredPoint of View for Genetic Damage Assessment UsingComet Assay in Human Lymphocytes. Appl Sci. 2021;11(9): 4094. https://doi.org/10.3390/app11094094
Alvarez-Moya C, Reynoso-Silva M, Canales-AguirreAA, Chavez-Chavez JO, Castañeda-Vázquez H, Feria-Velasco AI. Heterogeneity of genetic damage in cervicalnuclei and lymphocytes in women with differentlevels of dysplasia and cancer-associated risk factors.BioMed Res Int. 2015; 2015: 293408. https://doi.org/10.1155/2015/293408
Olive PL, Durand RE. Heterogeneity in DNA damageusing the comet assay. Cytometry Part A. 2005; 66A(1):1-8. https://doi.org/10.1002/cyto.a.20154
Olive PL, Banáth JP, Durand RE. Detection ofsubpopulations resistant to DNA-damaging agents inspheroids and murine tumours. Mutat Res-Fund Mol M.1997; 375(2): 157–165. https://doi.org/10.1016/s0027-5107(97)00011-0
Nishigori C, Yamano N, Kunisada M, Nishiaki-SrawadaA, Ohashi H, Igarashi T. Biological Impact of ShorterWavelength Ultraviolet Radiation-C. PhotochemPhotobiol. 2023; 99(2): 335–343. https://doi.org/10.1111/php.13742
Narra VR, Howell RW, Sastry KS, Rao DV. Vitamin Cas a radioprotector against iodine-131 in vivo. J NuclMed. 1993;34(4): 637-640. https://jnm.snmjournals.org/content/jnumed/34/4/637.full.pdf
Maeda J, Allum AJ, Mussallem JT, Froning CE, HaskinsAH, Buckner MA, et al. Ascorbic Acid 2-GlucosidePretreatment Protects Cells from Ionizing Radiation,UVC, and Short Wavelength of UVB. Genes. 2020:11(3); 238. https://doi.org/10.3390/genes11030238
Speit G, Hartmann A. The comet assay (single-cell geltest). A sensitive genotoxicity test for the detection ofDNA damage and repair. Method Mol Biol.1999; 113:203-212. https://doi.org/10.1385/1-59259-675-4:203
Anderson MJ. Permutation tests for univariate ormultivariate analysis of variance and regression. CanJ Fish Aquat Sci. 2001; 58(3): 626–639. https://doi.org/10.1139/f01-004
Phillips DH, Arlt VM. Genotoxicity: damage to DNAand its consequences. Mol Clin Environ Toxicol. 2009;(1): 87-110. https://doi: 10.1007/978-3-7643-8336-7_4
Pfeifer GP, Besaratinia A. UV wavelength-dependentDNA damage and human non-melanoma and melanomaskin cancer. Photochem. Photobiol. Sci. 2012; 11(1): 90-97. https://doi.org/10.1039/c1pp05144j
Hosseinimehr SJ. Trends in the development ofradioprotective agents. Drug Discov Today. 2007; 12(19):794-805. https://doi.org/10.1016/j.drudis.2007.07.017
Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidantproperties of ascorbic acid and gallic acid. Food Chem.2002; 79(3): 307-313. https:///doi.org/10.1016/s0308-8146(02)00145-0
Carr A, Maggini S. Vitamin C and Immune Function.Nutrients. 2017; 9(11): 1211-1217. https://doi.org/10.3390/nu9111211
Konopacka M, Palyvoda O, Rzeszowska-Wolny J.Inhibitory effect of ascorbic acid post-treatment onradiation-induced chromosomal damage in humanlymphocytes in vitro. Teratogen Carcin Mut. 2002;22(6): 443–450. https://doi.org/10.1002/tcm.10040
Konopacka M, Rzeszowska-Wolny J. AntioxidantVitamins C, E and β-carotene reduce DNA damagebefore as well as after γ-ray irradiation of humanlymphocytes in vitro. Mutat Res-Gen Toxicol EnvironMut. 2001; 491(1–2): 1–7. https://doi.org/10.1016/s1383-5718(00)00133-9
Sram RJ, Binkova B, Rossner P. Vitamin C forDNA damage prevention. Mutat Res-Fund Mol M.2012; 733(1–2): 39–49. https://doi.org/10.1016/j.mrfmmm.2011.12.001
Collins AR, El Yamani N, Lorenzo Y, ShaposhnikovS, Brunborg G, Azqueta A. Controlling variation inthe comet assay. Front Genet. 2014; 5: 359. https://doi.org/10.3389/fgene.2014.00359