2023, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2023; 25 (3)
Comparación fisicoquímica de cuatro mineral trióxido agregados disponibles comercialmente
Montero-Aguilar M, Vega-Baudrit JR, Pereira-Reyes BR, Pozos-Guillén A, Ulate-Rodríguez E, Chavarría-Bolaños D
Idioma: Ingles.
Referencias bibliográficas: 52
Paginas: 67-81
Archivo PDF: 435.40 Kb.
RESUMEN
Comparar la composición fisicoquímica de 4 MTA disponibles
comercialmente en América Latina. Se compararon física y químicamente ProRoot
MTA (Dentsply, EE. UU.), MTA Angelus (Angelus, Brasil), MTA Flow (Ultradent, EE. UU.)
y MTA Viarden (Viarden, México). Se obtuvieron imágenes de microscopía electrónica
de barrido (SEM) del polvo de MTA y de las presentaciones preparadas. Los análisis de
espectroscopía de dispersión de energía de rayos X (EDS) se realizaron por triplicado
para calcular la proporción de masa de calcio (Ca), silicio (Si), la proporción Ca/Si
entre las 4 marcas. Se realizaron análisis termogravimétricos (TGA) (50ºC-1000ºC), y
se calcularon las pérdidas de masa y los puntos de inflexión para cada material. Las
diferencias estadísticas para el contenido de Ca y Si se determinaron mediante ANOVA
(p‹0,05). Los análisis SEM mostraron diferencias evidentes en la apariencia tanto del
polvo como las preparaciones de los MTA, entre las diferentes marcas. MTA Angelus
mostró prismas cúbicos no observados en las otras 3 marcas. ProRoot MTA y MTA Flow
mostraron estructuras homogéneas similares. MTA Viarden fue el menos homogéneo,
con estructuras aleatorias (›15um). Al comparar las proporciones de masa de Ca y Si
entre las 4 muestras de polvo, MTA Viarden mostró proporciones significativamente
más bajas de ambos elementos en comparación con las otras marcas (p‹0,005). El
análisis TGA mostró un comportamiento similar para ProRoot MTA, MTA Angelus y MTA
Flow, con menos del 2 % de pérdida de masa al alcanzar los 1000 °C de temperatura.
El MTA Viarden mostró una pérdida de masa de 9,94% antes de los 700 °C, indicando
la presencia de diferentes contenidos sensibles a la degradación por temperatura. Los
MTA analizados demostraron diferencias significativas en su composición química y
características físicas. Los clínicos deben ser conscientes de las diferencias entre las
diferentes marcas de un mismo material, y futuras investigaciones deben enfocarse
en las implicaciones clínicas de estas diferencias.
REFERENCIAS (EN ESTE ARTÍCULO)
Montero-Aguilar M. Gray material in dentistry:the Latin America paradox. Odovtos-IntJ Dent Sc 2018; 20: 9.
Torabinejad M., Chivian N. Clinical applicationsof mineral trioxide aggregate. J Endod1999; 25: 197-206.
Parirokh M., Torabinejad M. Mineral trioxideaggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterialproperties. J Endod 2010; 36: 16-27.
Torabinejad M., Parirokh M. Mineraltrioxide aggregate: a comprehensive literaturereview--part II: leakage and biocompatibilityinvestigations. J Endod 2010; 36:190-202.
Parirokh M., Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36: 400-13.
Ha W.N., Nicholson T., Kahler B., Walsh L.J. Mineral Trioxide Aggregate-A Review of Properties and Testing Methodologies. Materials (Basel) 2017; 10: 1-18.
Gonçalves J.L., Viapiana R., Saraiva Miranda C.E., Borges A.H., da Cruz Filho A.M. Evaluation of physico-chemical properties of Portland cements and MTA. Braz Oral Res 2010; 24: 277-83.
Tawil P.Z., Duggan D.J., Galicia J.C. MTA: A clinical review. Compend Contin Educ Dent. 2015; 36: 247-64.
Mondelli J.A.S., Hoshino R.A., Weckwerth P.H., Cerri P.S., Leonardo R.T., Guerreiro-Tanomaru J.M., Tanomaru-Filho M., da Silva G.F. Biocompatibility of Mineral Trioxide Aggregate Flow and Biodentine. Int Endod J 2019; 52: 193-200.
Oliveira L.V., da Silva G.R., Souza G.L., Magalhães T.E.A., G.L.R. Barbosa, Turrioni A.P., Moura C.C.G. A Laboratory Evaluation of Cell Viability, Radiopacity and Tooth Discoloration Induced by Regenerative Endodontic Materials. Int Endod J 2020; 53: 1140-42.
Gandolfi M.G., Perut F., Ciapetti G., Mongiorgi R., Prati C. New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response. J Endod 2008; 34: 39-44.
Al-Rabeah E., Perinpanayagam H., MacFarland D. Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 2006; 32: 872-5.
Perinpanayagam H. Cellular response to mineral trioxide aggregate root-end filling materials. J Can Dent Assoc 2009; 75: 369-72.
Tomás-Catalá C.J., Collado-González M., García-Bernal D., Oñate-Sánchez R.E., Forner L., Llena C., Lozano A., Castelo-Baz P., Moraleda J.M., Rodríguez-Lozano F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017; 50 Suppl 2: e63-e72.
Ahmed H.M., Luddin N., Kannan T.P., Mokhtar K.I., Ahmad A. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations. J Endod 2014; 40: 1517-23.
Monteiro Bramante C., Demarchi A.C., de Moraes I.G., Bernadineli N., Garcia R.B., Spångberg L.S., Duarte M.A. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 909-13.
De-Deus G., de Souza M.C., Sergio Fidel R.A., Fidel S.R., de Campos R.C., Luna A.S. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J Endod 2009; 35: 887-90.
Komabayashi T., Spångberg L.S. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod 2008; 34: 94-8.
Islam I., Chng H.K., Yap A.U. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 2006; 39: 220-5.
Dammaschke T., Gerth H.U., Züchner H., Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005; 21: 731-8.
Gandolfi M.G., Van Landuyt K., Taddei P., Modena E., Van Meerbeek B., Prati C. Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRootmineral trioxide aggregate and calcium silicatecements in wet conditions and in real time. JEndod 2010; 36: 851-7.
Almeida A., Sichieri E.P. Thermogravimetricanalyses and mineralogical study of polymermodified mortar with silica fume. Mat Res2006; 9: 321-26.
Voicu G., Popa A.M., Badanoiu A.I., IordacheF. Influence of thermal treatment conditionson the properties of dental silicate cements.Molecules 2016; 21: 233.
Yang H., Che Y. Effects of nano CaCO3/limestone composite particle on the hydrationproducts of cement materials. AdvanMat Scien Eng 2018; 2018: 1-8.
Seo J.H., Amr I.T., Park S.M., BamagainR.A., Fadhel B.A., Kim G.M., Hunaidy A.S.,Lee HK. CO2 uptake of carbonation curedwith ground volcanic ash. Materials 2018;11: 1-13.
de Weerdt K., Haha B.M., Le Saout G., KjellsenK.O., Justnes H., Lothenbach B. Hydrationmechanisms of ternary portland cementscontaining limestone powder and fly ash.Cem Concr Res 2011; 41: 279-91.
Courard L., Herfort D., Villagran Z. LimestonePowder. IN: Properties of fresh andhardened concrete containing supplementarycementitious materials. Springer Int Pub;2018: 123-151.
Camilleri J. Characterization of hydrationproducts of MTA. Int Endod J 2008; 41:408-17
Camilleri J., Sorrentino F., Damidot D.Investigation of the hydration and bioactivityof radiopacified tricalcium silicate cement,Biodentine and MTA Angelus. Dent Mat2013; 29: 580-93.
Camilleri J. Hydration mechanisms ofmineral trioxide aggregate. Int Endod J 2007;40: 462-70.
Khalil I., Naaman A., Camilleri J. Propertiesof tricalcium silicate sealers. J Endod 2016;42: 1529-35.
Marciano M.A., Camilleri J., Lucateli R.,Lucateli R.L., Costa R.M., Matsumoto M.A.,Hungaro-Duarte M.A. Physical, chemicaland biological properties of white MTA withadditions of AlF3. Clin Oral Invest 2019; 23:
33-41.33. Belio-Reyes I.A., Bucio L., Cruz-ChavezE. Phase composition of ProRoot MTA byX-ray powder diffraction. J Endod 2009 35:875-78.
Chavez-de Souza L., Yadlapati M., Pereira-Lopes H., Silva R., Letra A., Nelson-Elias C.Physico-chemical and biological propertiesof a New Portland cement based root repairmaterial. Eur Endod J 2018; 3: 38-47.
Song J.S., Mante F.K., Romanow W., Kim S.Chemical analysis of powder and set formsof portland cement, gray Proroot MTA, andgray MTA Angelus. Oral Surg Oral Med OralPathol Oral Radiol Endod 2006; 102: 809-15.
De Oliveira M.G., Braga C., Demarco F.F.,Pinheiro A.L.B., Costa A.T., Pozza D.H.Comparative chemical study of MTA andPortland cements. Braz Dent J 2007; 18: 3-7.
Guimaraes B.M., Vivan R.C., Piazza B.,Alcalde M.P., Bramante C.M., Hungaro-Duarte M.A. Chemical physical physicalporperties and apatite forming ability ofMineral Trioxide Aggregate Flow. J Endod2017; 43: 1692-96.
De Deus G., Camilleri J., Primus C.M.,Hungaro-Duarte M.A., Bramante C.M.Introduction to Mineral Trioxide Aggregate.IN: Mineral Trioxide Aggregate in dentistry.Springer Int Pub; 2014: 1-17.
Zaini N., Van der Meer F., Van Ruitenbeek F.,De Smeth B., Amri F., Lievens C. An alternativequality control technique for mineralchemistry analysis of portland cement-gradelimestone using shortwave infrared spectroscopy. Remote Sens 2016; 8:1-16.
Badanoui A., Paceagiu, J., Voicu G. Hydration and hardening processes of Portland cements obtained from clinkers mineralized with fluoride and oxides. J Therm Anal Calorim 2011; 103: 879-88.
Boughanmi S., Labidi I., Tiss H., Megriche A. The effect of marl and clay compositions on the Portland cement quality. J Tun Chem Soc 2016; 18: 43-51.
Harrison A.M. Constitution and specification of Portland cement. N: Leas Chemistry of Concrete and Cement. Butterworth-Heinemann Pub; 2019: 87-155.
Bayraktar O.Y. The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in portland cement. Environ Monit Assess 2019; 191: 560.
López-García S., Pecci-Lloret M.R., Guerrero-Gironés J., Pecci-Lloret M.P., Lozano A., Llena C., Rodríguez-Lozano F.J., Forner L. Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer. Materials (Basel) 2019; 12: 3087.
Meena A.H., Arai Y. Environmental geochemistry of technetium. Environ Chem Lett 2017; 15: 241-263.
Chang S.W. Chemical composition and porosity characteristics of various calcium silicate-based endodontic cements. Bioinorg Chem Appl 2018; 2784632 .
Pelepenko L.E., Saavedra F., Antunes T.B.M., Bombarda G.F., Gomes B.P.F.A., Zaia A.A., Camilleri J., Marciano M.A. Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig 2021; 25: 663-72.
Ha W.N., Shakibaie F., Kahler B., Walsh L.J. Deconvolution of the particle size distribution of ProRoot MTA and MTA Angelus. Acta Biomater Odontol Scand 2016; 2: 7-11.
Ha W.N., Bentz D.P., Kahler B., Walsh L.J. D90: The Strongest Contributor to Setting Time in Mineral Trioxide Aggregate and Portland Cement. J Endod 2015; 41: 1146-50.
Kao C.T., Shie M.Y., Huang T.H., Ding S.J. Properties of an accelerated mineral trioxide aggregate-like root-end filling material. J Endod 2009; 35: 239-42.
Khalil I., Naaman A., Camilleri J. Investigation of a novel mechanically mixed mineral trioxide aggregate (MM-MTA(™) ). Int Endod J 2015; 48: 757-67.
Formosa L.M., Mallia B., Camilleri J. Mineral trioxide aggregate with anti-washout gel - properties and microstructure. Dent Mater 2013; 29: 294-306.