2023, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2023; 25 (3)
Evaluación de la precisión de escaneado de los escáneres de laboratorio de luz azul en maxilares desdentados completos con implantes múltiples con cuerpos de escaneado de titanio
Ezmek B, Cumhur SO
Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 55-66
Archivo PDF: 571.95 Kb.
RESUMEN
Evaluar la precisión del escaneado de la arcada completa con cuerpos de escaneado de titanio de múltiples implantes utilizando escáneres de laboratorio. Se fabricó un modelo maestro de una arcada maxilar edéntula con 6 implantes. Se insertaron cuerpos de escaneo de titanio en el modelo. Se utilizaron tres escáneres de laboratorio: D2000 (3Shape), Vinyl High Resolution (Smart Optics) e inEos X5 (Dentsply Sirona). El modelo maestro se escaneó consecutivamente diez veces usando escáneres de laboratorio dental (LS) sin separar y reposicionar los cuerpos de escaneo. La precisión lineal y angular entre implantes adyacentes se midió utilizando un software de inspección (Control X, Geomagic). Se calculó la precisión de los escaneos completos del arco. Las regiones del implante se definieron como; paralelo (R1: #24-26 y #16-14), angulado (R2: #22-24 y #14-12), angulado al plano oclusal (R3: #12-22) y cruzado (R4: #16-26). El efecto de LS y la región del implante en la precisión se comparó mediante ANOVA de dos vías (α=0,05). Se observó una distorsión lineal significativamente mayor en R4 (61,2±17,9µm) en comparación con R1 (23,4±15,5µm) y R2 (26 ±17,7µm) (p‹0,01). Se observaron mayores distorsiones lineales en R4 con D2000 (0,07±0,016 grados) y vinilo de alta resolución (0,067±0,02 grados) que en inEos X5 (0,032±0,021 grados) (p›0,05). Se observaron precisiones lineales medias mayores en R1 (9±8µm) y R3 (9,3±8,3µm) que en R4 (12,6±10,3µm) (p‹0,05). La mayor precisión lineal se observó en D2000 (7,2±7,6 µm) (p‹0,05). La precisión angular de D2000 (0,02±0,015 grados) fue la más alta (p‹0,01). La precisión angular de R4 (0,036±0,018 grados) fue la más baja (p‹0,01). Este estudio reveló que la veracidad se vio afectada por la región del implante y la precisión se vio afectada tanto por LS como por la región del implante.
REFERENCIAS (EN ESTE ARTÍCULO)
Simonis P., Dufour T., Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 2010; 21: 772-7.
Carlson B., Carleson G.E. Prosthodontic complications in osseointegrated dental implant treatment. Implant Dent. 1994; 3 (4): 264.
Papaspyridakos P., Benic G.I., Hogsett V.L., White G.S., Lal K., Gallucci G.O. Accuracy of implant casts generated with splinted and non-splinted impression techniques for edentulous patients: An optical scanning study. Clin Oral Implants Res. 2012; 23 (6): 676-81.
Hebel K.S., Gajjar R.C. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent. 1997; 77 (1): 28-35.
Da Rocha P.V.B., Freitas M.A., De Morais Alves Da Cunha T. Influence of screw access on the retention of cement-retained implant prostheses. J Prosthet Dent. 2013; 109 (4): 264-8.
Kwon T., Bain P.A., Levin L. Systematic review of short- (5-10 years) and long-term (10 years or more) survival and success of full-arch fixed dental hybrid prostheses and supporting implants. J Dent. 2014; 42 (10): 1228-41.
Kapos T., Evans C. CAD/CAM Technology for Implant Abutments, Crowns, and Superstructures. Int J Oral Maxillofac Implant. 2014; 29: 117-36.
Kim K.R., Seo K. young, Kim S. Conventional open-tray impression versus intraoral digital scan for implant-level complete-arch impression. J Prosthet Dent. 2019; 122 (6): 543-9.
Knechtle N., Wiedemeier D., Mehl A., Ender A. Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: An in vitro study. J Prosthet Dent. 2022; 128 (3): 468-478.
Mizumoto R.M., Yilmaz B. Intraoral scan bodies in implant dentistry : A systematic review. J Prosthet Dent. 2018; 120 (3): 343-52.
Huang R., Liu Y., Huang B., Chen Z., Li Z. Improved scanning accuracy with newly designed scan bodies : An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation. 2020; 31: 625-33.
Fluegge T., Att W., Metzger M., Nelson K. A Novel Method to Evaluate Precision of Optical Implant Impressions with Commercial Scan Bodies-An Experimental Approach. J Prosthodont. 2017; 26 (1): 34-41.
Fokas G., Ma L., Chronopoulos V., Mattheos N. Differences in micromorphology of the implant e abutment junction for original and third-party abutments on a representative dental implant. J Prosthet Dent. 2019; 121 (1): 143-50.
Giménez B., Özcan M., Martinez-Rus F., Pradies G. Accuracy of a Digital Impression System Based on Parallel Confocal Laser Technology for Implants with Consideration of Operator Experience and Implant Angulation and Depth. Int J Oral Maxillofac Implant. 2014; 29: 853-62.
Rutkunas V., Gečiauskaite A., Jegelevičius D., Vaitiekunas M. Accuracy of digital implant impressions with intraoral scanners. A systematic review. Eur J Oral Implant. 2017; 10: 101-20.
Wulfman C., Naveau A., Rignon-Bret C. Digital scanning for complete-arch implant-supported restorations: A systematic review. J Prosthet Dent. 2020; 124 (2): 161-7.
Assunção W.G., Britto R.C., Ricardo Barão V.A., Delben J.A., Dos Santos P.H. Evaluation of Impression Accuracy for Implant atVarious Angulations. Implant Dent. 2010; 19 (2): 167-74.
Abdel-azim T., Zandinejad A., Elathamna E., Lin W., Morton D. The Influence of Digital Fabrication Options on the Accuracy of Dental Implant-Based Single Units and Complete-Arch Frameworks. Int J Oral Maxillofac Implant. 2014; 29 (6): 1281-8.
Conrad H.J., Pesun I.J., DeLong R., Hodges J.S. Accuracy of two impression techniques with angulated implants. J Prosthet Dent. 2007; 97 (6): 349-56.
Menini M., Setti P., Pera F., Pera P., Pesce P. Accuracy of multi-unit implant impression : traditional techniques versus a digital procedure. Clin Oral Invest. 2018; 22 (3): 1253-62.
Fernandez M.A., Mendoza C.Y.P. De, Platt J.A., Levon J.A., Hovijitra S.T., Nimmo A. A Comparative Study of the Accuracy between Plastic and Metal Impression Transfer Copings for Implant Restorations. J Prosthod. 2013; 22: 367-76.
Braian M., Bruyn C.D.T.H. De, Fransson H., Christersson C., Wennerberg A. Tolerance Measurements on Internal- and External-Hexagon Implants. Int J Oral Maxillofac Implant. 2014; 29 (4): 846-52.
Ender A., Mehl A. Accuracy of complete-Arch dental impressions: A new method of measuring trueness and precision. J Prosthet Dent. 2013; 109 (2): 121-8.
Emir F., Ayyıldız S. Evaluation of the trueness and precision of eight extraoral laboratory scanners with a complete-arch model: a three-dimensional analysis. J Prosthodont Res. 2019; 63 (4): 434-9.
Renne W., Ludlow M., Fryml J., Schurch Z., Mennito A., Kessler R., et al. Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons. J Prosthet Dent. 2017; 118 (1): 36-42.
González de Villaumbrosia P., Martínez-Rus F., García-Orejas A., Salido M.P., Pradíes G. In vitro comparison of the accuracy (trueness and precision) of six extraoral dental scanners with different scanning technologies. J Prosthet Dent. 2016; 116 (4): 543-550.e1.
Pan Y., Tam J.M.Y., Tsoi J.K.H., Lam W.Y.H., Pow E.H.N. Reproducibility of laboratory scanning of multiple implants in complete edentulous arch: Effect of scan bodies. J Dent. 2020; 96 (January): 103329.
Chia V.A., Rcsed M.R.D., Esguerra R.J., Teoh K.H., Juin F, Teo W, et al. In Vitro Three-Dimensional Accuracy of Digital Implant Impressions : The Effect of Implant Angulation. Int J Oral Maxillofac Implant. 2017; 32 (2): 313-21.
Pan Y., Tam J.M., Tsoi J.K., Lam W.Y., Huang R., Chen Z., et al. Evaluation of laboratory scanner accuracy by a novel calibration block for complete-arch implant rehabilitation. J Dent. 2020; 102: 103476.
Tan M.Y., Sophia M.D.S., Xin H., Keng M.D.S., Wong M., Tan Y.H., et al. Comparison of Three-Dimensional Accuracy of Digital and Conventional Implant Impressions : Effect of Interimplant Distance in an Edentulous Arch. Int J Oral Maxillofac Implant. 2019; 34 (2): 366-80.
Cho S., Schaefer O., Thompson G.A., Guentsch A. Comparison of accuracy andreproducibility of casts made by digital and conventional methods. J Prosthet Dent. 2015; 113 (4): 310-5.
Ender A., Mehl A. Accuracy of complete-arch dental impressions : A new method of measuring trueness and precision. J Prosthet Dent. 2013; 109 (2): 121-8.
Winter W., Mohrle S., Holst S., Karl M. Bone loading caused by different types of misfits of implant-supported fixed dental prostheses: a three-dimensional finite element analysis based on experimental results. Int J Oral Maxillofac Implant. 2010; 25 (5): 947-52.
Olea-vielba M., Jare D., Methani M.M. Accuracy of the Implant Replica Positions on the Complete Edentulous Additive Manufactured Cast. J Prosthod. 2020; 29 (9): 780-6.
Thanasrisuebwong P., Kulchotirat T., Anunmana C. Effects of inter-implant distance on the accuracy of intraoral scanner : An in vitro study. J Adv Prosthodont. 2021; 21 (13): 107-16.
Lee S.J., Kim S.W., Lee J.J., Cheong C.W. Comparison of intraoral and extraoral digital scanners: Evaluation of surface topography and precision. Dent J. 2020; 8 (2): 52.
Ebeid K., Nouh I., Ashraf Y., Cesar P. F. Accuracy of different laboratory scanners for scanning of implant-supported full arch fixed prosthesis. J Esthet Restor Dent. 2022; 34 (5): 843-848.
Güth J.F., Runkel C., Beuer F., Stimmelmayr M., Edelhoff D., Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig. 2017; 21 (5): 1445-55.