2022, Número 4
<< Anterior Siguiente >>
Enf Infec Microbiol 2022; 42 (4)
Vacunas contra el SARS-COV-2: aspectos generales y efectos adversos
Callejas D, Moreira R, Cañarte AJ, Mosquera SJA
Idioma: Español
Referencias bibliográficas: 106
Paginas: 165-180
Archivo PDF: 348.58 Kb.
RESUMEN
El impacto de la enfermedad por el SARS-COV-2 (COVID-19) plantea grandes retos tanto en la salud como en la economía
mundial, lo que ameritó medidas para el control de la enfermedad. La preparación de vacunas contra este
microorganismo ha sido la tarea más apremiante para el control de esta pandemia. Se han creado varios candidatos
de vacunas en diferentes centros académicos y farmacológicos basados en diferentes tecnologías. Entre estas
plataformas de estudio están las vacunas de ARNM, las de ADN, las producidas con virus vectores inactivados o atenuados,
las creadas con unidades de proteínas y las elaboradas con partículas proteicas artificiales que asemejan
al virus. Actualmente estas vacunas se encuentran en diferentes fases de estudios y otras ya se han suministrado
a un gran porcentaje de la población mundial. Los efectos adversos locales y sistémicos generalmente son leves o
moderados y temporales; sin embargo, se han presentado casos minoritarios de reacciones adversas a estas vacunas,
algunas menores y otras graves, como es el caso de las reacciones anafilácticas dependientes de IgE y las no
dependientes de IgE (reacciones anafilactoides), así como recciones no esperadas en personas con un basamento
autoinmune. Dichas reacciones se han referido a la presencia de los excipientes de las vacunas, donde destacan el
polietileno glicol y sus derivados, como el polisorbato. Estas reacciones pueden presentarse en personas con o sin
previa sensibilización. Sin embargo, la gran mayoría de los individuos no presentan estas reacciones, lo que hace a
las vacunas el medio idóneo para el control del COVID-19.
REFERENCIAS (EN ESTE ARTÍCULO)
Lu, R., Zhao, X., Li, J. et al., “Genomic characterisationand epidemiology of 2019 novel coronavirus: implicationsfor virus origins and receptor binding”, Lancet, 2020; 395: 565-574.
World Health Organization (who), “Coronavirus (covid-19)”, 2020. Disponible en: https://covid19.who.int.
Kupferschmidt, K. y Cohen, J., “Will novel virus go pandemicor be contained?”, Science 2020; 367: 610-611.
Anthony, S., Johnson, C., Greig, D. et al., “Global patternsin coronavirus diversity”. Virus Evol 2017; 3: vex012.
Masters, P.S., “The molecular biology of coronaviruses”.Adv Virus Res 2006; 66: 193-292.
De Groot, R.J., “Structure, function and evolution of thehemagglutinin-esterase proteins of corona and toroviruses”.Glycoconj J. 2006; 23: 59-72.
Báez-Santos, Y., St. John, S. y Mesecar, A., “The sars coronaviruspapain-like protease: structure, function andinhibition by designed antiviral compounds”, AntiviralRes 2015; 115:21-38.
Gheblawi, M., Wang, K., Viveiros, A. et al., “Angiotensin-converting enzyme 2: sars-cov-2 receptor and regulatorof the renin-angiotensin system: celebratingthe 20th anniversary of the discovery of ace2”. Circ Res2020; 126: 1456-1474.
Jothimani, D., Venugopal, R., Abedin, M.F. et al., “covid-19 and the liver”. J Hepatol 2020; 73: 1231-1240.
Mosquera-Sulbarán, J., Pedreáñez, A., Carrero, Y. et al.,“C-reactive protein as an effector molecule in the covid-19 pathogenesis”, Rev Med Virol 2021; 1-8: e2221.
Su, S., Wong, G., Shi, W. et al., “Epidemiology, geneticrecombination, and pathogenesis of coronaviruses”.Trends Microbiol 2016; 24: 490-502.
Wrapp, D., Wang, N., Corbett, K. et al., “Cryo-em structureof the 2019-ncov spike in the prefusion conformation”.Science 2020; 367: 1260-1263.
Tang, B., Bragazzi, N., Li, Q. et al., “An updated estimationof the risk of transmission of the novel coronavirus(2019-ncov)”. Infect Dis Model 2020; 5: 248-255.
Toumi, M. y Ricciardi, W., “The economic value of vaccination:why prevention is wealth”, J Market AccessHealth Policy, 2015, 3: 29204.
Plotkin, S., “Vaccines: correlates of vaccine-induced immunity”,Clin infect Dis, 2008, 47: 401-409. Disponibleen: https://doi.org/10.1086/589862.
Pulendran, B. y Ahmed, R., “Immunological mechanismsof vaccination”, Nat Immunol, 2011,12: 509-517.
Kolumam, G., Thomas, S., Thompson, L. et al., “Typei interferons act directly on cd8 t cells to allow clonalexpansion and memory formation in response to viralinfection”, J Exp Med, 2005, 202: 637-650.
Pasare, C. y Medzhitov, R., “Toll pathway-dependentblockade of cd4+cd25+ t cell-mediated suppression bydendritic cells”, Science, 2003; 299: 1033-1036.
Pulendran, B., Tang, H. y Manicassamy, S., “Programmingdendritic cells to induce th2 and tolerogenic responses”.Nat Immunol 2010;11: 647-655.
Kasturi, S., Skountzou, I., Albrecht, R. et al., “Programmingthe magnitude and persistence of antibodyresponses with innate immunity”, Nature, 2011, 470:543-547.
Sahin, U., Kariko, K. y Tureci, O., “mrna-based therapeuticsdeveloping a new class of drugs”. Nat Rev DrugDiscov, 2014; 13: 759-780.
Wolff, J., Malone, R., Williams, P. et al., “Direct genetransfer into mouse muscle in vivo”, Science 1990;247: 1465-1468.
Lu, S., “Timely development of vaccines against sarscov-2”, Emerg Microbes Infect 2020; 9: 542-544.
Banchereau, J. y Steinman, R., “Dendritic cells and thecontrol of immunity”, Nature, 1998; 19: 245-252.
World Health Organization (who), “draft landscape ofcovid-19 candidate vaccines”, 2020. Disponible en: https://www.who.int/publications/ m/item/draft-landscape-of-covid-19-candidate-vaccines.
Robert-Guroff, M., “Replicating and non-replicating 3viral vectors for vaccine development”. Curr Opin Biotechnol,2007; 18: 546-556.
Liniger, M., Zúñiga, A. y Naim, H., “Use of viral vectorsfor the development of vaccines”, Expert Rev Vaccines,2007, 6: 255-266.
Zúñiga, A., Wang, Z., Liniger, M. et al., “Attenuatedmeasles virus as a vaccine vector”, Vaccine, 2007; 25:
2974-2983.29. Johnson, J., Nasar, F., Coleman, J. et al., “Neurovirulenceproperties of recombinant vesicular stomatitis virusvectors in non-human primates”, Virology 2007; 360:36-49.
Pardi, N., Hogan, M., Porter, F. et al., “mrna vaccines-anew era in vaccinology”, Nat Rev Drug Discov, 2018;17: 261-279.
Zhang, C., Maruggi, G., Shan, H, et al., “Advances inmrna vaccines for infectious diseases”, Front Immunol,2019, 10: 594.
Jahanafrooz, Z., Baradaran, B., Mosafer, J. et al., “Comparisonof dna and mrna vaccines against cancer”, DrugDiscov Today, 2020, 25: 552-560.
Moderna, Inc., “Drug design studio: digital designand ordering of mrna for research, 2020. Disponibleen: https://www.modernatx.com/mrna-technology/research-engine.
Yang, Z., Kong, W., Huang, Y. et al., “A dna vaccine inducessars coronavirus neutralization and protectiveimmunity in mice”. Nature 2004; 428: 561-564.
Liu, M.A., “A comparison of plasmid dna and mrna asvaccine technologies”. Vaccines 2019; 7: 37.
Sardesai, N. y Weiner, D., “Electroporation delivery ofdna vaccines: prospects for success”. Curr Opin Immunol2011; 23: 421-429.
Inovio Pharmaceuticals, “Inovio initiates phase 1 clinicaltrial of its covid-19 vaccine and plans first dose today,2020. Disponible en: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Initiates-Phase-1-Clinical-Trial-Of-Its-covid-19-Vaccine-and-Plans-First-Dose-Today/default.aspx.
Zhang, J., Zeng, H., Gu, J. et al., “Progress and prospectson vaccine development against sars-cov-2”. Vaccines,2020; 8: E153.
Okba, N., Raj, V. y Haagmans, B., “Middle East respiratorysyndrome coronavirus vaccines: current status andnovel approaches”, Curr Opin Virol, 2017; 23: 49-58.
World Health Organization (who), “Types of vaccine andadverse reactions”, 2020. Disponible en: https://www.who.int/vaccine_safety/initiative/tech_support/Part-2.pdf.
Clover Biopharmaceuticals, Clover and gsk announceresearch collaboration to evaluate coronavirus (covid-19)vaccine candidate with pandemic adjuvant system,2020. Disponible en: www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=42.
Li, F., “Structure, function, and evolution of coronavirusspike proteins”, Annu Rev Virol 2016; 3: 237-261.
The University of Queensland, “Significant step in covid-19 vaccine quest”, 2020. Disponible en: https://www.uq.edu.au/news/article/ 2020/02/significant-step’-covid-19-vaccine-quest.
Azmi, F., Ahmed, S, Fuaad, A. y Skwarczynksi, M., “Tothi. Recent progress in adjuvant discovery for peptide-basedsubunit vaccines”. Hum Vaccines Immunother2014; 10: 778-796.
Ahmed, S., Quadeer, A. y McKay, M., “Preliminary identificationof potential vaccine targets for 2019-ncov basedon sars-cov immunological studies”, BioRxiv, 2020, 12:254.
Novavax, Comunicado de prensa, “Novavax advancesdevelopment of novel covid-19 vaccine, 2020.Disponible en:http://ir.novavax.com/news-releases/news-release-details/novavax-advances-development-novel-covid-19-vaccine.
Sharma, A., Krause, A. y Worgall, S., “Recent developmentsfor Pseudomonas vaccines”. Hum Vaccines,2011; 7: 999-1011.
Kushnir, N., Streatfield, S.J. y Yusibov, V., “Virus-likeparticles as a highly efficient vaccine platform: diversityof targets and production systems and advances in clinicaldevelopment”. Vaccine 2012; 31: 58-83.
Adolph, D.W. y Butler, P.J., “Studies on the assembly ofa spherical plant virus. iii. Reassembly o infectious virusunder mold conditions”. J Mol Biol 1997; 109: 345-357.
Khudyakov, Y. y Pumpens, P., Viral nanotechnology, BocaRaton, FL, crc Press Taylor & Francis Group, 2016.
Zabel, F., Mohanan, D., Bessa, J. et al., “Viral particlesdrive rapid differentiation of memory b cells into secondaryplasma cells producing increased levels of antibodies”.J Immunol 2014; 192: 5499-5508.
Sedwick, C. y Altman, A., “Ordered just so: lipid raftsand lymphocyte function”, Sci stke, 2002: re2. Disponibleen: https://doi.org/10.1126/stke.2002.122.re2.
Harding, C.V. y Song, R., “Phagotyc processing of exogenousparticulate antigens by macrophages for presentationby class 1 mhc molecules”, J Immunol, 1994;153: 4925-4933.
Ambhuhl, P.M., Tissot, A.C., Fulurija, A. et al., “A vaccinefor hypertension based on virus-like particles: preclinicalefficacy and phase i safety and immunogenicity”. JHyperten 2007; 25: 63-72.
Stephenson, K.E., Le Gars, M. Sadoff, J. et al., “Immunogenicityof the ad26.cov2.s vaccine for covid-19”, jama,2021; 325: 1535-1544.
Zhu, F.C., Li, Y.H., Guan, X.H. et al., “Safety, tolerability,and immunogenicity of a recombinant adenovirustype-5 vectored covid-19 vaccine: a dose-escalation,open-label, non-randomised, first-in-human trial”, Lancet,2020, 395: 1845-1854.
Martynova, E., Hamza, S., Garanina, E.E. et al., “Longterm immune response produced by the Sputnik V vaccine”,Int J Mol Sci, 2021, 22: 11211.
Logunov, D.Y., Dolzhikova, I.V., Zubkova, O.V. et al.,“Safety and immunogenicity of a rad26 and rad5 vector-based heterologous prime-boost covid-19 vaccine intwo formulations: two open, non-randomized phase 1/2studies from Russia”. Lancet 2020; 396: 887-897.
Momin, T., Kansagra, K., Patel, H. et al., “Safety andimmunogenicity of a dna sars-cov-2 vaccine (zycov-d):results of an open-label, non-randomized phase i partof phase i/ii clinical study by intradermal route in healthysubjects in India”, E Clin Med, 2021, 38: 1-13.
Tebas, P., Yang, S., Boyer, J.D. et al., “Safety and immunogenicityof ino-4800 dna vaccine against sars-cov-2:a preliminary report of an open-label, phase 1 clinicaltrial”, E Clin Med, 2021, 31: 100689.
Mammen Jr, M.P., Tebas, P., Agnes, J. et al., “Safetyand immunogenicity of ino-4800 dna vaccine againstsars-cov-2: a preliminary report of a randomized, blinded,placebo-controlled, Phase 2 clinical trial in adultsat high risk of viral exposure”, MedRxiv, preprint 2021.Disponible en: https://www.medrxiv.org/content/10.1101/2021.05.07.21256652v1.full.pdf.
Segundo, D.S, Comins-Boo, A., Irure-Ventura, J. et al.,“Immune assessment of bnt162b2 m-rna-spike basedvaccine response in adults”, Biomedicines, 2021; 9: 868.
Jackson, L.A., Anderson, E.J., Rouphael, N. et al., “Anmrna vaccine against sars-cov-2: preliminary report”. NEngl J Med 2020; 383: 1920-1931..
Zhang, Y., Zeng, G., Pan, H. et al., “Safety, tolerability,and immunogenicity of an inactivated sars-cov-2 vaccinein healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial”,Lancet Infect Dis, 2021, 21: 181-192.
Xia, S., Zhang, Y., Wang, Y., et al., “Safety and immunogenicityof an inactivated sars-cov-2 vaccine, bbibp-corv:a randomised, double-blind, placebo-controlled, phase1/2 trial”, Lancet Infect Dis, 2021, 21: 39–51.
Gorman, M.J., Patel, N., Guebre-Xabier, M. et al., “Faband Fc contribute to maximal protection against sarscov-2 following nvx-cov2373 subunit vaccine with Matrix-M vaccination”, Cell Rep Med, 2021, 2: 100405.
Formica, N., Mallory, R., Albert, G. et al., “Different doseregimens of a sars-cov-2 recombinant spike protein vaccine(nvx-cov2373) in younger and older adults: a phase2 randomized placebo-controlled trial”, plos Med, 2021,18: e1003769..
Polack, F.P., Thomas, S.J., Kitchin, N. et al., “Safety andefficacy of the bnt162b2 mrna covid-19 vaccine”, N EnglJ Med, 2020, 383: 2603-2615.
Bochner, B.S. y Lichtenstein, L.M., “Anaphylaxis”. NEngl J Med 1991; 324: 1785-1790.
Dooling, K., McClung, N., Chamberland, M. et al., “TheAdvisory Committee on Immunization Practices’ interimrecommendation for allocating initial supplies of covid-19 vaccine: United States, 2020. Morb Mortal WklyRep, 2020; 69: 1857-1859..
Stone, C.A. Jr, Rukasin, C.R.F., Beachkofsky, T.M. et al.,“Immune-mediated adverse reactions to vaccines”. Br JClin Pharmacol 2019; 85: 2694-2706.
Sellaturay, P., Nasser, S. y Ewan, P., “Polyethylene glycol-induced systemic allergic reactions (anaphylaxis)”. JAllergy Clin Immunol Pract 2021; 9: 670-675.
Pardi, N., Hogan, M.J., Porter, F.W. et al., “mrna vaccines-a new era in vaccinology”, Nat Rev Drug Discov,2018, 17: 261-279.
Krammer, F., “sars-cov-2 vaccines in development”.Nature, 2020; 586: 516-527. Disponible en: https://doi.org/10.1038/s41586-020-2798-3.
Banerji, A., Wickner, P.G., Saff, R. et al., “mrna vaccinesto prevent covid-19 disease and reported allergic reactions:current evidence and suggested approach”, JAllergy Clin Immunol Pract, 2021, 9: 1423-1437.
Chanan-Khan, A., Szebeni, J., Savay, S. et al., “Complementactivation following first exposure to pegylatedliposomal doxorubicin (doxil): possible role in hypersensitivityreactions”, Ann Oncol, 2003, 14: 1430-1437.
Banerji, A., “The armed forces medical services responseto covid-19”, Indian J Public Health, 2020, 64:S94-S95.
Li, X., Ostropolets, A., Makadia, R. et al., “Characterizingthe incidence of adverse events of special interestfor covid-19 vaccines across eight countries: amultinational network cohort study”, MedRxiv, 2021,2021.03.25.21254315. Disponible en: https://doi.org/10
79.1101/2021.03.25.21254315.79. Dotan, A. y Shoenfeld, Y., “Perspectives on vaccine inducedthrombotic thrombocytopenia”, J Autoimmun,2021, 121: 102663.
Kantarcioglu, B., Iqbal, O., Walenga, J.M. et al., “An updateon the pathogenesis of covid-19 and the reportedlyrare thrombotic events following vaccination”, Clin ApplThromb Hemost, 2021, 27: 10760296211021498.
Talotta, R. y Robertson, E.S., “Antiphospholipid antibodiesand risk of post- covid-19 vaccination thrombophilia:the straw that breaks the camel’s back?”. CytokineGrowth Factor Rev 2021; 60: 52-60.
Bozkurt, B., Kamat, I. y Hotez, P.J., “Myocarditis with covid-19 mrna vaccines”. Circulation, 2021; 144: 471-484.
Mouch, S.A., Roguin, A., Hellou, E. et al., “Myocarditisfollowing covid-19 mrna vaccination”, Vaccine, 2021, 39:3790-3793.
Lu, L., Xiong, W., Mu, J. et al., “The potential neurologicaleffect of the covid-19 vaccines: a review”, ActaNeurol Scand, 2021, 144: 3-12.
Lu, L., Xiong, W., Mu J. et al., “Neurological side effectsof covid-19 vaccines are rare”. Acta Neurol Scan, 2021;144: 111-112.
Halstead, S.B. y Katzelnick, L. “covid-19 vaccines: shouldwe fear ade?. J Infect Dis 2020; 222: 1946-1950.
Wen, J., Cheng, Y., Ling, R. et al., “Antibody-dependentenhancement of coronavirus”, Int J Infect Dis, 2020,100: 483-489.
Freeman, D., Loe, B.S., Chadwick, A. et al., “covid-19vaccine hesitancy in the UK: the Oxford CoronavirusExplanations, Attitudes, and Narratives Survey (oceans)ii”. Psychol Med, 2020; 11: 1-15.
Shay, D.K., Gee, J., Su, J.R. et al., “Safety monitoring ofthe Janssen (Johnson & Johnson) covid-19 vaccine: UnitedStates, March-April 2021”, mmwr Morb Mortal WklyRep, 2021, 70: 680-684.
Folegatti, P., Ewer, K.J., Aley, P.K. et al., “Safety andimmunogenicity of the chadox1-s ncov-19 vaccineagainst sars-cov-2: a preliminary report of a phase 1/2,single-blind, randomised controlled trial”. Lancet 2020;396: 467-478.
“Reg 174 information for UK healthcare professionals”.Disponible en: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1029200/INFORMATION_FOR_HCPS_ON_COVID-19_VACCINE_ASTRAZENECA__R174_.pdf.
Knoll, M.D. y Wonodi, C., “Oxford-AstraZeneca covid-19vaccine efficacy”, Lancet, 2021, 397: 72-74.
Gobierno de México, “Guía técnica para la aplicacónde la vacuna recombinante de vector de adenovirustipo 5 contra el virus sars-cov-2 de CanSino Biologics”,Disponible en: https://coronavirus.gob.mx/wp-content/uploads/2021/03/GTApp_Cansino_16Mar2021.pdf.
CanSinobio, “Our fight against covid-19”. Disponible en:http://www.cansinotech.com/html/1//156/218/index.html.
Jarinowski, A., Semenov, A., Kaminski, M. et al., “Mildadverse events of Sputnik V vaccine in Rusia: socialmedia content analysis of telegram via deep learning”, JMed Internet Res 2021; 23: e30529.
Babamahmoodi, F., Saeedi, M., Alizadeh-Navaei, R. etal., “Side effects and immunogenicity following administrationof the Sputnik V covid-19 vaccine in healthcare workers in Iran”, Sci Rep 2021; 11: 21464.
Balakrishnan, V.S. “The arrival of Sputnik V”. Lancet InfectDis 2020; 20: 1128.
Polack, F.P., Thomas, S.J., Kitchin, N. et al., “Safety andefficacy of the bnt162b2 mrna covid-19 vaccine”, N EnglJ Med, 2020, 383: 2603-2615.
“UK medicines regulator gives approval for first UKcovid-19 vaccine”, 2020. Disponible en: https://www.gov.uk/government/news/uk-medicines-regulator-gives-approval-for-first-uk-covid-19-vaccine.
Baden, L.R., El Sahly, H.M., Essink, B. et al., “Efficacyand safety of the mrna-1273 sars-cov-2 vaccine”, N EnglJ Med, 2021, 384: 403-416.
Food and Drug Administration, “fda takes additionalaction in fight against covid-19 by issuing emergencyuse authorization for second covid-19 vaccine, 2020.Disponible en: https://www.fda.gov/news-events/press-announcements/fda-takes-additional-action-fight-against-covid-19-issuing-emergency-use-authorization-second-covid.
Smith, T.R.F., Patel, A., Ramos, S. et al., “Immunogenicityof a dna vaccine candidate for covid-19”. Nat Commun,2020; 11: 2601.
Dunkle, L.M., Kotloff, K.L., Gay, C.L. et al., “Efficacy andsafety of nvx-cov2373 in adults in the United States andMexico”. Disponible en: https://www.medrxiv.org/content/10.1101/2021.10.05.21264567v1.full.pdf.
Lazarus, J.V., Ratzan, S.C., Palayew, A. et al., “A globalsurvey of potential acceptance of a covid-19 vaccine”,Nat Med, 2020, 1-4.
Chung, C.H., Mirakhur, B., Chan, E. et al., “Cetuximab-inducedanaphylaxis and ige specific for galactose-α-1,3-galactose”.N Engl J Med, 2008; 358: 1109-1117.
Poland, G.A., Ovsyannikova, I.G. y Kennedy, R.B., “Personalizedvaccinology: a review”. Vaccine, 2018; 36:5350-5357.