2022, Número 5
<< Anterior Siguiente >>
salud publica mex 2022; 64 (5)
Patrones espaciotemporales de la incidencia de dengue y Zika durante el brote de Zika 2015-2018 en México
Cortes-Escamilla A, Roche B, Rodríguez-López MH, López Gatell-Ramírez H, Alpuche-Aranda CM
Idioma: Ingles.
Referencias bibliográficas: 54
Paginas: 478-487
Archivo PDF: 655.38 Kb.
RESUMEN
Objetivo. Evaluar espacial y temporalmente la presencia
simultánea de conglomerados de casos clínicos de dengue y
Zika y su relación con el riesgo esperado de transmisión del
dengue.
Material y métodos. Se realizó una clasificación
de la transmisión del riesgo de dengue para todo el país y un
análisis de autocorrelación espacial para identificar conglomerados
de casos clínicos confirmados de dengue y Zika entre
2015 a 2018, utilizando el Índice de Moran.
Resultados.
Al inicio del brote se identificaron conglomerados de ambas
enfermedades en municipios de alto riesgo de transmisión
de dengue, sin embargo, al final del brote, los grupos de Zika
se produjeron en municipios de bajo riesgo de transmisión
de dengue.
Conclusión. En este estudio se identificaron
conglomerados de Zika en áreas de bajo riesgo de dengue,
lo que sugiere la participación de múltiples factores que
favorecen la introducción y diseminación del virus, como las
diferencias en la entomología y el control y la posibilidad de
inmunidad cruzada en la población.
REFERENCIAS (EN ESTE ARTÍCULO)
Zambrano LI, Vasquez-Bonilla WO, Fuentes-Barahona IC, da SilvaJS, Valle-Reconco JA, Medina MT, et al. Spatial distribution of Zika inHonduras during 2016-2017 using geographic information systems (GIS)– Implications for public health and travel medicine. Travel Med Infect Dis. 2019;31:101382. https://doi.org/10.1016/j.tmaid.2019.01.017
Lozano-Fuentes S, Hayden MH, Welsh-Rodríguez C, Ochoa-MartinezC, Tapia-Santos B, Kobylinski KC, et al. The dengue virus mosquitovector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg.2012;87(5):902-9. https://doi.org/10.4269/ajtmh.2012.12-0244
Sirohi D, Kuhn RJ. Zika virus structure, maturation, and receptors. J InfectDis. 2017;216(suppl 10):S935-44. https://doi.org/10.1093/infdis/jix515
Valero N, Mosquera J, Añez G, Levy A, Marcucci R, de Mon MA. Differentialoxidative stress induced by dengue virus in monocytes from humanneonates, adult and elderly individuals. PLoS One. 2013;8(9):e73221.https://doi.org/10.1371/journal.pone.0073221
Gómez-Dantes H. El dengue en las américas. Un problema de saludregional. Salud Publica Mex. 1991;33(4):347-55 [cited Dec 2021]. Availablefrom: http://saludpublica.mx/index.php/spm/article/view/5417/5699
López-Gatell H, Hernández-Avila M, Hernández Ávila JE, Alpuche-ArandaCM. Dengue in Latin America: a persistent and growing public healthchallenge. In: Franco-Paredes C, Santos-Preciado JI, eds. Neglected TropicalDiseases. Latin America and the Caribbean.Vienna: Springer, 2015:203-224.https://doi.org/10.1007/978-3-7091-1422-3_11
Díaz-Quiñonez JA, López-Martínez I, Torres-Longoria B, Vázquez-Pichardo M, Cruz-Ramírez E, Ramírez-González JE, et al. Evidence ofthe presence of the Zika virus in Mexico since early 2015. Virus Genes.2016;52(6):855-7. https://doi.org/10.1007/s11262-016-1384-0
Dirección General de Epidemiología. Histórico Boletín Epidemiológico.1983-2021. Mexico: Dirección General de Epidemiología, 2021 [cited Dec2021]. Available from: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico
Bisanzio D, Dzul-Manzanilla F, Gómez-Dantés H, Pavia-Ruz N, HladishTJ, Lenhart A, et al. Spatio-temporal coherence of dengue, chikungunyaand Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis.2018;12(3):e0006298. https://doi.org/10.1371/journal.pntd.0006298
Queiroz E, Medronho R. Spatial analysis of the incidence of Dengue,Zika and Chikungunya and socioeconomic determinants in the city ofRio de Janeiro, Brazil. Epidemiol Infect. 2021;149:e188-e188. https://doi.org/10.1017/S0950268821001801
Freitas LP, Cruz OG, Lowe R, Sá Carvalho M. Space-time dynamics ofa triple epidemic: dengue, chikungunya and Zika clusters in the city of Riode Janeiro. Proceedings Biol Sci. 2019;286(1912):20191867. https://doi.org/10.1098/rspb.2019.1867
Langerak T, Mumtaz N, Tolk VI, van Gorp ECM, Martina BE, Rockx B, etal. The possible role of cross-reactive dengue virus antibodies in Zika viruspathogenesis. PLoS Pathog. 2019;15(4):e1007640. https://doi.org/10.1371/journal.ppat.1007640
Katzelnick LC, Narvaez C, Arguello S, López-Mercado B, Collado D, AmpieO, et al. Zika virus infection enhances future risk of severe dengue disease.Science. 2020;369(6507):1123-8. https://doi.org/10.1126/science.abb6143
Wen J, Shresta S. Antigenic cross-reactivity between Zika and dengueviruses: is it time to develop a universal vaccine? Curr Opin Immunol.2019;59:1-8. https://doi.org/10.1016/j.coi.2019.02.001
Moghadas SM, Shoukat A, Espindola AL, Pereira RF, Abdirizak F, LaskowskiM, et al. Asymptomatic transmission and the dynamics of Zika Iinfection. SciRep. 2017;7(1):5829. https://doi.org/10.1038/s41598-017-05013-9
Instituto de Diagnóstico y Referencia Epidemilógicos Dr Manual MartínezBáez. Lineamientos para la vigilancia por laboratorio del Dengue y otrasarbovirosis. Mexico: InDRE, 2017 [cited Dec 2021]. Available from: https://www.gob.mx/cms/uploads/attachment/file/629265/Lineamientos_Dengue_Arb_V1-2021.pdf
Dirección General de Epidemiología. Bases Nominales de Dengue2015-2019. Mexico, 2019.
Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E. An update of high-resolutionmonthly climate surfaces for Mexico. Int J Climatol. 2014;34(7):2427-37.https://doi.org/10.1002/joc.3848
Cortes-Escamilla A, Roche B, Rodríguez MH, López-Gatell Ramírez H,Alpuche-Aranda CM. Supplementary-information-DENZIK. Github Repos.
2022 [cited Dec 2021]. Available from: https://github.com/Anais-Cortes/Supplementary-information-DENZIK20. Costa EAP, Santos EM, Correia JC, Albuquerque CMR de. Impactof small variations in temperature and humidity on the reproductiveactivity and survival of Aedes aegypti (Diptera, Culicidae). RevBras Entomol. 2010;54(3):488-93. https://doi.org/10.1590/S0085-56262010000300021
Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW.Effects of fluctuating daily temperatures at critical thermal extremes onAedes aegypti life-history traits. PLoS One. 2013;8(3):e58824. https://doi.org/10.1371/journal.pone.0058824
Desenclos JC. Transmission parameters of vector-borne infections.Médecine Mal Infect. 2011;41(11):588-93. https://doi.org/10.1016/j.medmal.2011.07.016
Gimond M. Intro to GIS and Spatial Analysis. 2019 [cited May 2020].Available from: https://mgimond.github.io/Spatial/spatial-autocorrelation.html
Rabal H, Cap NL, Grumel E, Trivi M. An intuitive introduction to theconcept of spatial coherence. arXiv. 2014. https://doi.org/10.48550/ar-Xiv.1408.3820
Anselin L, Li X. Operational local join count statistics for clusterdetection. J Geogr Syst. 2019;21(2):189-210. https://doi.org/10.1007/s10109-019-00299-x
Siabato W, Guzmán-Manrique J. La autocorrelación espacial y eldesarrollo de la geografía cuantitativa. Cuad Geogr Rev Colomb Geogr.2019;28(1):1-22. https://doi.org/10.15446/rcdg.v28n1.76919
Anselin L. Local Spatial Autocorrelation. GeoDa, 2020 [cited Mar 8 2021]Available from: https://geodacenter.github.io/workbook/6c_local_multi/lab6c.html
Anselin L. The Moran scatterplot as an ESDA tool to assess localinstability in spatial association. London: Routledge, 1996. https://doi.org/10.1201/9780203739051-8
Lorenzo JMM, Iribas BL. Introducción a la Geoestadstica Lineal. Spain:Netbiblo, 2008.
Gao Y, Cheng J, Meng H, Liu Y. Measuring spatio-temporal autocorrelationin time series data of collective human mobility. Geo-spatial InfSci. 2019;22(3):166-73. https://doi.org/10.1080/10095020.2019.1643609
Czaplewski RL, Reich RM. Expected value and variance of Moran’sbivariate spatial autocorrelation statistic for a permutation test. USA:Department of Agriculture, Forest Service, Rocky Mountain Forest andRange Expriment Station, 1993.
Jaya IGNM, Andriyana Y, Tantular B, Zulhanif, Ruchjana BN. SpatiotemporalDengue disease clustering by means local spatiotemporal Moran’sIndex. IOP Conf Ser Mater Sci Eng. 2019;621(1):12017. https://doi.org/10.1088/1757-899x/621/1/012017
Dzul-Manzanilla F, Correa-Morales F, Che-Mendoza A, Palacio-VargasJ, Sánchez-Tejada G, Gonzáles-Roldan JF, et al. Identifying urban hotspotsof dengue, chikungunya, and Zika transmission in Mexico to support riskstratification efforts: a spatial analysis. Lancet Planet Heal. 2021;5(5):e277-e285. https://doi.org/10.1016/S2542-5196(21)00030-9
Betanzos-Reyes ÁF, Rodríguez MH, Romero-Martínez M, Sesma-Medrano E, Rangel-Flores H, Santos-Luna R. Association of dengue feverwith Aedes spp. abundance and climatological effects. Salud Publica Mex.2018;60:12-20. https://doi.org/10.21149/8141
Da Silva Augusto LG, Gurgel AM, Costa AM, Diderichsen F, LacazFA, Parra-Henao G, et al. Aedes aegypti control in Brazil. Lancet.2016;387(10023):1052-3. https://doi.org/10.1016/S0140-6736(16)00626-7
Uno N, Ross TM. Dengue virus and the host innate immune response.Emerg Microbes Infect. 2018;7(1):167. https://doi.org/10.1038/s41426-018-0168-0
World Health Organization. Vector control operations framework forZika virus. WHO, 2016. Available from: https://www.who.int/publications/i/item/WHO-ZIKV-VC-16.4
Kautz TF, Díaz-González EE, Erasmus JH, Malo-García LR, LangsjoenRM, Patterson EI, et al. Chikungunya virus as cause of febrile illnessoutbreak, Chiapas, Mexico, 2014. Emerg Infect Dis. 2015;21(11):2070-3.https://doi.org/10.3201/eid2111.150546
Rodríguez-Aguilar ED, Martínez-Barnetche J, González-Bonilla CR,Tellez-Sosa JM, Argotte-Ramos R, Rodríguez MH. Genetic diversityand spatiotemporal dynamics of Chikungunya infections in Mexicoduring the outbreak of 2014-2016. Viruses. 2022;14(1):70. https://doi.org/10.3390/v14010070
Hernández-Ávila JE, Palacio-Mejía LS, López-Gatell H, Alpuche-ArandaCM, Molina-Vélez D, González-González L, Hernández-Ávila M. Zika virusinfection estimates, Mexico. Bull World Heal Organ. 2018;96(5):306-13.https://doi.org/10.2471/BLT.17.201004
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ,et al. The importance of vector control for the control and elimination ofvector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831. https://doi.org/10.1371/journal.pntd.0007831
Benítez-Valladares D, Kroeger A, Tejeda GS, Hussain-Alkhateeb L. Validationof the Early Warning and Response System (EWARS) for dengueoutbreaks: Evidence from the national vector control program in Mexico.PLoS Negl Trop Dis. 2021;15(12):e0009261. https://doi.org/10.1371/journal.pntd.0009261
Montoya M, Collins M, Dejnirattisai W, Katzelnick LC, Puerta-Guardo H, Jadi R, et al. Longitudinal analysis of antibody cross-neutralizationfollowing Zika virus and Dengue virus infection in Asia and theAmericas. J Infect Dis. 2018;218(4):536-45. https://doi.org/10.1093/infdis/jiy164
Patel B, Longo P, Miley MJ, Montoya M, Harris E, de Silva AM.Dissecting the human serum antibody response to secondary denguevirus infections. PLoS Negl Trop Dis. 2017;11(5):e0005554. https://doi.org/10.1371/journal.pntd.0005554
Tsang TK, Ghebremariam SL, Gresh L, Gordon A, Halloran ME,Katzelnick LC, et al. Effects of infection history on dengue virusinfection and pathogenicity. Nat Commun. 2019;10(1):1246. https://doi.org/10.1038/s41467-019-09193-y
Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengueviral infections. Postgr Med J. 2004;80:588-601. https://doi.org/10.1136/pgmj.2004.019638
Collins MH, McGowan E, Jadi R, Young E, Lopez CA, Baric RS, et al.Lack of durable cross-neutralizing antibodies against Zika virus fromDengue virus infection. Emerg Infect Dis. 2017;23(5):773-81. https://doi.org/10.3201/eid2305.161630
Achee NL, Gould F, Perkins TA, Reiner RC, Morrison AC, RitchieSA, et al. A critical assessment of vector control for dengue prevention.PLoS Negl Trop Dis. 2015;9(5). https://doi.org/10.1371/JOURNAL.PNTD.0003655
Magalhaes T, Braga C, Cordeiro MT, Oliveira ALS, Castanha PMS, MacielAPR, et al. Zika virus displacement by a chikungunya outbreak in Recife,Brazil. PLoS Negl Trop Dis. 2017;11(11). https://doi.org/10.1371/JOURNAL.PNTD.0006055
Brito da Cruz AMC, Rodrigues HS. Personal protective strategies fordengue disease: Simulations in two coexisting virus serotypes scenarios.Math Comput Simul. 2021;188:254-67. https://doi.org/10.1016/j.matcom.2021.04.002
Carrillo-Valenzo E, Danis-Lozano R, Velasco-Hernández JX, Sánchez-Burgos G, Alpuche C, López I, et al. Evolution of dengue virus inMexico is characterized by frequent lineage replacement. Arch Virol.2010;155(9):1401-12. https://doi.org/10.1007/S00705-010-0721-1
Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuket B, KlungthongC, Richardson JH, et al. Dengue-1 virus clade replacement in Thailandassociated with enhanced mosquito transmission. J Virol. 2012;86(3):1853-61. https://doi.org/10.1128/JVI.06458-11
Roche B, Gaillard B, Léger L, Pélagie-Moutenda R, Sochaki T, Cazalles B,et al. An ecological and digital epidemiology analysis on the role of humanbehavior on the 2014 Chikungunya outbreak in Martinique. Sci Rep.2017;7(1):5967. https://doi.org/10.1038/s41598-017-05957-y
Carvalho MS, Honorio NA, Garcia LMT, Carvalho LC de S. Aedesægypti control in urban areas: A systemic approach to a complex dynamic.PLoS Negl Trop Dis. 2017;11(7):e0005632. https://doi.org/10.1371/journal.pntd.0005632