2022, Número 2
<< Anterior Siguiente >>
Med Int Mex 2022; 38 (2)
COVID-19: prevención, diagnóstico y tratamiento. Recomendaciones de un grupo multidisciplinario
Ortiz-Ibarra FJ, Simón-Campos JA, Macías-Hernández A, Anda-Garay JC, Vázquez-Cortés J, García-Méndez J, Volkow-Fernández P, Cornejo-Juárez P, González-Rivera M, Aldrete-Velasco JA, Enríquez-Ramos MS, Arias-Luna A
Idioma: Español
Referencias bibliográficas: 124
Paginas: 288-321
Archivo PDF: 575.99 Kb.
RESUMEN
Antecedentes: La infección por SARS-CoV-2, causante de la COVID-19 ha impactado
al mundo entero debido a su extensa y rápida propagación. En los dos últimos años se
han confirmado más de 412 millones de casos, con más de 5.8 millones de muertes,
hasta el 14 de febrero del 2022.
Objetivo: Integrar una serie de recomendaciones basadas en el mejor nivel de
evidencia en prevención, diagnóstico y tratamiento de la infección por SARS-CoV-2,
incluidas sus nuevas variantes.
Metodología: Revisión de diferentes guías internacionales y de artículos recientes
publicados en revistas con revisión por pares. Emitir recomendaciones con base en el
nivel de evidencia y grado de recomendación establecidos por las guías de la National
Institute for Health and Care Excellence (NICE). Los autores analizaron los artículos
seleccionados y, con base en su experiencia, resumieron lo más relevante para cumplir
con los objetivos de estas recomendaciones.
Resultados: Se encontraron 200 artículos de los que solo se seleccionaron 124
que cumplieron los requisitos para identificar el nivel de evidencia y grado de recomendación.
Conclusiones: La prevención mediante vacunación sigue siendo la mejor herramienta
para poder establecer mecanismos de protección contra el virus y disminuir
sustancialmente las hospitalizaciones y la mortalidad asociadas. Si bien la vacunación
homóloga es aún el patrón de referencia aceptado, hay que considerar la eficacia de
los esquemas heterólogos para evitar la hospitalización y la mortalidad. Los anticuerpos
monoclonales, como sotrovimab, tienen actividad en contra de la variante Ómicron y
la molécula AZD7442 que ha demostrado una alta eficacia para prevenir la COVID-19
sintomática en condiciones de pre y posexposición.
REFERENCIAS (EN ESTE ARTÍCULO)
Hartenian E, Nandakumar D, Lari A, Ly M, et al. The molecular virology of coronaviruses. J Biol Chem 2020; 295 (37): 12910-34. doi: 10.1074/jbc
Torbati E, Krause KL, Ussher JE. The Immune Response to SARS-CoV-2 and Variants of Concern. Viruses 2021; 13 (10): 1911. doi: 10.3390/v13101911
Lauring AS, Hodcroft EB. Genetic Variants of SARS-CoV-2 – What Do They Mean? JAMA 2021; 325 (6): 529-31. doi: 10.1001/jama.2020.27124
Grubaugh ND, Petrone ME, Holmes EC. We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol 2020; 5 (4): 529-30. doi: 10.1038/s41564- 020-0690-4
Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci 2016; 73 (23): 4433-48. doi: 10.1007/ s00018-016-2299-6
Zhou P, Yang XL, Wang XD, Hu B, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 (7798): 270-73. doi: 10.1038/ s41586-020-2012-7
Jaimes JA, André NM, Chappie JS, Millet J, et al. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J Mol Biol 2020; 432 (10): 3309- 25. doi: 10.1016/j.jmb.2020.04.009
who.int (internet). WHO; (actualizado 8 enero 2021, citado 13 enero 2022) Disponible en: https://www.who.int/es/ activities/tracking-SARS-CoV-2-variants
Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021 Apr 9;372(6538):eabg3055. doi: 10.1126/science.abg3055. Epub 2021 Mar 3. PMID: 33658326; PMCID: PMC8128288.
Davies NG, Jarvis CI, CMMID COVID-19 Working Group, Edmunds WJ, Jewell NP, Díaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021 May;593(7858):270-274. doi: 10.1038/s41586-021-03426-1. Epub 2021 Mar 15. PMID: 33723411
Ecdc.europa.eu (internet). Unión Europea: ECDC; (actualizado 10 febrero 2022, citado 11 febrero 2022) Disponible en: https://www.ecdc.europa.eu/en/covid-19/variantsconcern (accesado Ene 14, 2022)
Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Eurosurveillance. 2021 Apr;26(16):2100348. doi: 10.2807/1560-7917.ES.2021.26.16.2100348. PMID: 33890566; PMCID: PMC8063589.
Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med 2021 May 20;384(20):1885-1898. doi: 10.1056/NEJMoa2102214. Epub 2021 Mar 16. PMID: 33725432; PMCID: PMC7993410
Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021 May 21;372(6544):815-821. doi: 10.1126/ science.abh2644. Epub 2021 Apr 14. PMID: 33853970; PMCID: PMC8139423.
Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021 May 27;184(11):2939-2954.e9. doi: 10.1016/j.cell.2021.03.055. Epub 2021 Mar 30. PMID: 33852911; PMCID: PMC8008340.
Dagpunar J. Interim estimates of increased transmissibility, growth rate, and reproduction number of the Covid-19 B.1.617.2 variant of concern in the United Kingdom. medRxiv. 2021;doi:doi.org/10.11/2021.06.03.21258293
Sheikh A, McMenamin J, Taylor B, et al. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. The Lancet. 2021 Jun 26;397(10293):2461- 2462. doi: 10.1016/S0140-6736(21)01358-1. Epub 2021 Jun 14. PMID: 34139198; PMCID: PMC8201647.
Bruxvoort KJ, Sy LS, Qian L, et al. Effectiveness of mRNA- 1273 against Delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ. 2021 Dec 15;375:e068848. doi: 10.1136/bmj-2021-068848. PMID: 34911691; PMCID: PMC8671836
Ferré VM, Peiffer-Smadja N, Visseaux B, et al. Omicron SARS-CoV-2 variant: What we know and what we don’t. Anaesth Crit Care Pain Med. 2022 Feb;41(1):100998. doi: 10.1016/j.accpm.2021.100998. Epub 2021 Dec 10. PMID: 34902630; PMCID: PMC8660660
UKHSA: The spread of Omicron and replacement of Delta in the UK, 5 January 2022 - GOV.UK https://www.gov.uk/ government/publications/ukhsa-the-spread-of-omicronand- replacement-of-Delta-in-the-uk-5-january-2022
Singhal T. The Emergence of Omicron: Challenging Times Are Here Again! Indian J Pediatr. 2022 Jan 13:1–7. doi: 10.1007/s12098-022-04077-4. Epub ahead of print. PMID: 35025038; PMCID: PMC8756165.
Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021 Dec 11;398(10317):2126-2128. doi: 10.1016/S0140- 6736(21)02758-6. Epub 2021 Dec 3. Erratum in: Lancet. 2022 Jan 8;399(10320):142. PMID: 34871545; PMCID: PMC8640673
Araf Y, Akter F, Tang Y, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID- 19 vaccines. J Med Virol. 2022 Jan 12. doi: 10.1002/ jmv.27588. Epub ahead of print. PMID: 35023191
Mahase E. Covid-19: What do we know about omicron sublineages? BMJ 2022 Feb 11;376:o358. doi: 10.1136/ bmj.o358. PMID: 35149516.
Outbreak.info (internet). Outbreak.info; (actualizado 15 febrero 2022, citado 11 febrero 2022) Disponible en : https://outbreak.info/situation-reports?pango=BA.1&loc =ZAF&loc=GBR&loc=USA&selected=ZAF
who.int (internet). WHO; (actualizado 10 febrero 2022, citado 13 febrero 2022) Disponible en: https://www.who. int/teams/risk-communication/epi-win-updates
Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet 2022 Jan 29;399(10323):437-446. doi: 10.1016/S0140- 6736(22)00017-4. Epub 2022 Jan 19. PMID: 35065011; PMCID: PMC8769664.
Collie S, Champion J, Moultrie H, et al. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med 2022 Feb 3;386(5):494-496. doi: 10.1056/ NEJMc2119270. Epub 2021 Dec 29. PMID: 34965358; PMCID: PMC8757569.
Ecdc.europa.eu (internet). Unión Europea: ECDC; (actualizado 20 diciembre 2021, citado 11 febrero 2022) Disponible en: https://www.ecdc.europa.eu/en/publications- data/methods-detection-and-characterisation-sarscov- 2-variants-first-update
En.ssi.dk (internet). Holanda: SSI; (actualizado 20 enero 2022)[citado 2022 Feb 13]. Disponible en: https://en.ssi. dk/news/news/2022/omicron-variant-ba2-accounts-foralmost- half-of-all-danish-omicron-cases
En.ssi.dk (internet). Dinamarca: SSI; (actualizado 31 enero 2022)[citado 2022 Feb 13]. Disponible en: https://en.ssi. dk/news/news/2022/ba2-more-transmissible-than-ba1- vaccinated-less-likely-to-infected-pass-on-infection
Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: Evidence from Danish Households. medRxiv . 2022 Jan 30 [cited 2022 Feb 13];2022.01.28.22270044. Available from: https://www.medrxiv.org/content/ 10.1101/2022.01.28.22270044v1 doi: https://doi. org/10.1101/2022.01.28.22270044
Desingu PA, Nagarajan K, Dhama K. Emergence of Omicron third lineage BA.3 and its importance. J Med Virol 2022 Jan 18. doi: 10.1002/jmv.27601. Epub ahead of print. PMID: 35043399.
who.int (internet). WHO; (actualizado 7 diciembre 2021, citado 15 enero 2021) Disponible en: (http:// www.who.int/newsroom/events/detail/2021/12/07/ default-calendar/extraordinary-meeting-of-the-strategicadvisory- group-of-experts-on-immunization-(sage)- 7-december-2021).
Guyatt GH, Alonso-Coello P, Schünemann HJ, et al. Guideline panels should seldom make good practice statements: guidance from the GRADE Working Group. J Clin Epidemiol. 2016 Dec;80:3-7. doi: 10.1016/j.jclinepi.2016.07.006. Epub 2016 Jul 22. PMID: 27452192..
Barros J. Hammerschmidt S, Cossmann A, et al. Immune responses against SARS.CoV-2 variants after heterologus and homologous ChAdOx1nCoV-19/BNT162B2 vaccination. Nature. 2021 Sep;27(9):1525-1529. doi: 10.1038/ s41591-021-01449-9. Epub 2021 Jul 14. PMID: 34262158; PMCID: PMC8440184.
Skowronski DM, Setayeshgar S, Febriani Y, et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. medRxiv. doi: 10.1101/2021.10.26.21265397.
Martinez-Baz I, Trobajo-Sanmartin C, Miqueleiz A, et al. Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021. Euro Surveill. 2021 Sep;26(39):2100894. doi: 10.2807/1560-7917.ES.2021.26.39.2100894. PMID: 34596016; PMCID: PMC8485582..
Wanlapakorn N, Suntronwong N, Phowatthanasathian H, et al. Safety and immunogenicity of heterologous and homologous inactivated and adenoviral-vectored COVID-19 vaccines in healthy adults. medRxiv, doi:10.1101/2021.1 1.04.21265908.
Liu X, Shaw RH, Stuart ASV, Greenland M, et al. Safety and immunogenicity of heterologous versus homologous primeboost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. Lancet. 2021 Sep 4;398(10303):856- 869. doi: 10.1016/S0140-6736(21)01694-9. Epub 2021 Aug 6. PMID: 34370971; PMCID: PMC8346248..
Benning L, Töllner M, Hidmark A, et al. Heterologous ChAdOx1 nCoV-19/BNT162b2 Prime-Boost Vaccination Induces Strong Humoral Responses among Health Care Workers. Vaccines (Basel). 2021 Aug 4;9(8):857. doi: 10.3390/ vaccines9080857. PMID: 34451982; PMCID: PMC8402499.
Munro APS, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COVBOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021 Dec 18;398(10318):2258-2276. doi: 10.1016/S0140-6736(21)02717-3. Epub 2021 Dec 2. Erratum in: Lancet. 2021 Dec 18;398(10318):2246. PMID: 34863358; PMCID: PMC8639161.
News.yahoo.com (internet). Chile: Yahoo!; (actualizado 5 Agosto 2021; citado 11 febrero 2022) Disponible en: https://news.yahoo.com/chile-covid-19-vaccine-boosters- 183448343.html
nytimes.com (internet). Estados Unidos; New York Times; (actualizado febrero 11, 2022, citado febrero 11 2022) Disponible en: https://www.nytimes.com/2021/12/23/ world/middleeast/israel-vaccine-4th-dose.html.
Rasmussen SA, Smulian JC, Lednicky JA, et al. Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol. 2020 May;222(5):415-426. doi: 10.1016/j.ajog.2020.02.017. Epub 2020 Feb 24. PMID: 32105680; PMCID: PMC7093856.
Fares Qeadan, Nana A. Mensah, Benjamin Tingey, et al. Stanford. The risk of clinical complications and death among pregnant women with COVID-19 in the Cerner COVID-19 cohort: a retrospective análisis BMC Pregnancy Childbirth. 2021 Apr 16;21(1):305. doi: 10.1186/s12884- 021-03772-y. PMID: 33863292; PMCID: PMC8051832.
Lokken EM, Huebner EM, Taylor GG, et al. COVID-19 in Pregnancy Collaborative. Disease severity, pregnancy outcomes, and maternal deaths among pregnant patients with severe acute respiratory syndrome coronavirus 2 infection in Washington State. Am J Obstet Gynecol. 2021 Jul;225(1):77.e1-77.e14. doi: 10.1016/j.ajog.2020.12.1221. Epub 2021 Jan 27. PMID: 33515516; PMCID: PMC7838012.
Martinez-Portilla RJ, Sotiriadis A, Chatzakis C. Pregnant women with SARS-COV-2 infection are at higher risk of death and pneumonia: propensity score matched abalysis of a nationwide prospective cohort (COV19Mx). Ultrasound Obstet Gynecol. 2021 Feb;57(2):224-231. doi: 10.1002/ uog.23575. PMID: 33320401
Martinez-Portilla RJ, Smith ER, He S, et al. Young pregnant women are also at an increased risk of mortality and severe illness due to coronavirus disease 2019: analysis of the Mexican National Surveillance Program. Am J Obstet Gynecol. 2021 Apr;224(4):404-407. doi: 10.1016/j.ajog.2020.12.1197. Epub 2020 Dec 17. PMID: 33345802; PMCID: PMC7837025.
Rasmussen SA, Kelley CF, Horton JP, et al. Coronavirus Disease 2019 (COVID-19) Vaccines and Pregnancy: What Obstetricians Need to Know Obstet Gynecol. 2021 Mar 1;137(3):408-414. doi: 10.1097/AOG.0000000000004290. Erratum in: Obstet Gynecol. 2021 May 1;137(5):962. PMID: 33370015; PMCID: PMC7884084
cdc.gov(internet). Estados Unidos: cdc; (actualizado 8 febrero 2022, citado 11 febrero 2022) Disponible en: https:// www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/ vsafepregnancyregistry.html
Gray KJ, Bordt EA, Atyeo C, et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women: a cohort study. Am J Obstet Gynecol. 2021 Sep;225(3):303. e1-303.e17. doi: 10.1016/j.ajog.2021.03.023. Epub 2021 Mar 26. PMID: 33775692; PMCID: PMC7997025.
Charepe N, Gonçalves J, Juliano AM, et al. COVID-19 mRNA vaccine and antibody response in lactating women: a prospective cohort study. BMC Pregnancy Childbirth 2021 Sep 17;21(1):632. doi: 10.1186/s12884-021-04051-6. PMID: 34535094; PMCID: PMC8447894.
Falsaperla R, Leone G, Familiari M, et al. COVID-19 vaccination in pregnant and lactating women: a systematic review. Expert Rev Vaccines. 2021 Dec;20(12):1619-1628. doi: 10.1080/14760584.2021.1986390. Epub 2021 Oct 11. PMID: 34592123; PMCID: PMC8515785.
Gob.mx (internet). México: gob.mx; 2022 (actualizado 04 de enero de 2022; citado 11, febrero 2022) Disponible en: https://www.gob.mx/cms/uploads/attachment/ file/690500/MM_2021_SE52.pdf
infobae.com (internet). México: infobae; 2022 (citado 11, febrero 2022) Disponible en: https://www.infobae.com/ america/mexico/2021/06/09/embarazadas-vacunadasen- mexico-van-casi-92000-inmunizadas-contra-covid-19/
Khalid M, Selvam K, Jeffry AJ, et al. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics 2022 Jan 4;12(1):110. doi: 10.3390/diagnostics12010110. PMID: 35054277; PMCID: PMC8774565
Dinnes J, Deeks J, Berhane S, et al. Cochrane COVID-19 Diagnostic Test Accuracy Group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARSCoV- 2 infection. Cochrane Database Syst Rev. 2021 Mar 24;3(3):CD013705. doi: 10.1002/14651858.CD013705. pub2. PMID: 33760236; PMCID: PMC807859.
Lee RA, Herigon JC, Benedetti A, et al. Performance of Saliva, Oropharyngeal Swabs, and Nasal Swabs for SARSCoV- 2 Molecular Detection: a Systematic Review and Metaanalysis. J Clin Microbiol. 2021 Apr 20;59(5):e02881-20. doi: 10.1128/JCM.02881-20. PMID: 33504593; PMCID: PMC8091856.
cdc.gov (internet) Estados Unidos; CDC; (actualizado 5 de octure del 2021) (citado el 14 de febrero del 2022) Disponible en: https://espanol.cdc.gov/coronavirus/2019- ncov/community/organizations/testing-non-healthcareworkplaces. html)
Guevara-Hoyer K, Fuentes-Antrás J, De la Fuente-Muñoz E et al. Serological Tests in the Detection of SARS-CoV-2 Antibodies. Diagnostics (Basel). 2021 Apr 9;11(4):678. doi: 10.3390/diagnostics11040678. PMID: 33918840; PMCID: PMC8069538.
Mercado M, Malagón-Rojas J, Delgado G, et al. Evaluation of nine serological rapid tests for the detection of SARS-CoV-2. Rev Panam Salud Publica. 2020;44:e149. doi: 10.26633/RPSP.2020.149.
Prokop M, Van Everdingen W, Van Rees T, et al. CO- RADS A categorial CT assessment scheme for patients with suspected COVID-19: definition and evaluation, Radiology 2020 Aug;296(2):E97-E104. doi: 10.1148/radiol.2020201473. Epub 2020 Apr 27. PMID: 32339082; PMCID: PMC7233402
Yang R, Li X, Liu H, et al. Chest CT Severity Score: An Imaging Tool for Assessing Sever COVID-19, Radiology: Cardiothoracic Imaging 2020 Mar 30;2(2):e200047. doi: 10.1148/ ryct.2020200047. PMID: 33778560; PMCID: PMC7233443
Meglio L, Carriero S, Biondetti P, et al. Chest imaging in patients with acute respiratory failure because of coronavirus disease 2019, Curr Opin Crit Care 2022 Feb 1;28(1):17-24. doi: 10.1097/MCC.0000000000000906. PMID: 34864792; PMCID: PMC8711303
Juárez F, García M, Huerta A, et al. Hallazgos tomográficos en afectación pulmonar por COVID-19, experiencia inicial en el Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Neumología y Cirutía de Tórax 2020; 79 (2): 71-77 doi:10.35366/94630
Kabinger F, Stiller C, Schmitzova J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021 Sep;28(9):740-746. doi: 10.1038/s41594- 021-00651-0. Epub 2021 Aug 11. PMID: 34381216; PMCID: PMC8437801
Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med. 2022 Feb 10;386(6):509-520. doi: 10.1056/NEJMoa2116044. Epub 2021 Dec 16. PMID: 34914868; PMCID: PMC8693688
Nih.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 2021 (actualizado abril 21–2021) (citado febrero 11, 2022). Disponible en: https://files.covid19treatmentguidelines. nih.gov/guidelines/covid19treatmentguidelines. pdf
Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl J Med. 2022 Jan 26:NEJMc2119407. doi: 10.1056/NEJMc2119407. Epub ahead of print. PMID: 35081300; PMCID: PMC8809508.
Pillaiyar T, Manickam M, Namasivayam V, et al. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem. 2016 Jul 28;59(14):6595-628. doi: 10.1021/acs.jmedchem.5b01461. Epub 2016 Feb 29. PMID: 26878082; PMCID: PMC7075650.
Fda.gov (internet). Estados Unidos. FDA; (actualizado 22 diciembre 2021) (citado 11 febrero 2022) Disponible en: https://www.fda.gov/media/155050/download.
Wen W, Chen C, Tang J, et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann Med. 2022 Dec;54(1):516-523. doi: 10.1080/07853890.2022.2034936. PMID: 35118917; PMCID: PMC8820829.
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017 Jun 28;9(396):eaal3653. doi: 10.1126/scitranslmed.aal3653. PMID: 28659436; PMCID: PMC5567817.
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 — final report. N Engl J Med 2020 Nov 5;383(19):1813-1826. doi: 10.1056/NEJMoa2007764. Epub 2020 Oct 8. PMID: 32445440; PMCID: PMC7262788
Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med. 2022 Jan 27;386(4):305-315. doi: 10.1056/ NEJMoa2116846. Epub 2021 Dec 22. PMID: 34937145; PMCID: PMC8757570.
Loo YM, McTamney PM, Arends RH, et al. The SARSCoV- 2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci Transl Med. 2022 Jan 25:eabl8124. doi: 10.1126/scitranslmed.abl8124. Epub ahead of print. PMID: 35076282.
Su W, Sia SF, Schmitz AJ, et al. Neutralizing Monoclonal Antibodies That Target the Spike Receptor Binding Domain Confer Fc Receptor-Independent Protection against SARS-CoV-2 Infection in Syrian Hamsters. mBio. 2021 Oct 26;12(5):e0239521. doi: 10.1128/mBio.02395-21. Epub 2021 Sep 14. PMID: 34517754; PMCID: PMC8546861.
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020 Feb 15;395(10223):507-513. doi: 10.1016/S0140- 6736(20)30211-7. Epub 2020 Jan 30. PMID: 32007143; PMCID: PMC7135076.
De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016 Jul;29(3):695-747. doi: 10.1128/CMR.00102-15. PMID: 27281742; PMCID: PMC4978613
who.int (internet). WHO; (actualizado 2 marzo 2021, citado 14 enero 2022) Disponible en: (WHO-2019-nCoVprophylaxes- 2021.1; https://www.who.int/publications/i/ item/WHO-2019-nCoV-prophylaxes-2021-1)
who.int (internet). WHO; (actualizado 14 enero 2022, citado 14 enero 2022) Disponible en: WHO-2019-nCoVtherapeutics- 2022.1 Living Guideline
Scavone C, Brusco S, Bertini M, et al. Current pharmacological treatments for COVID-19: What's next?. British Journal of Pharmacology. 2020 Nov;177(21):4813-4824. doi: 10.1111/bph.15072. Epub 2020 May 15. PMID: 32329520; PMCID: PMC7264618.
Fda.gov (internet). Estados Unidos. FDA; (actualizado 31 diciembre 2020) (citado 11 febrero 2022) Disponible en:(https://www.fda.gov/drugs/new-drugs-fda-cdersnew- molecular-entities-and-new-therapeutic-biologicalproducts/ new-drug-therapy-approvals-2020)
Goldman JD, Lye DC, Hui DS, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. New Eng J Med. 2020 Nov 5;383(19):1827-1837. doi: 10.1056/NEJMoa2015301. Epub 2020 May 27. PMID: 32459919; PMCID: PMC7377062
Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020 Jun 11;382(24):2327-2336. doi: 10.1056/ NEJMoa2007016. Epub 2020 Apr 10. PMID: 32275812; PMCID: PMC7169476..
Fda.gov (internet). Estados Unidos. FDA; (actualizado 4 enero 2022) (citado 11 febrero2022). https://web.archive. org/web/20220124032947/https://www.fda.gov/ media/137566/download)
Unamglobal.unam.mx (internet) México; UNAM; (actualizado 23 de Marzo de 2020) (citado 14 enero del 2022) Disponible en: https://unamglobal.unam.mx/wholaunches- global-megatrial-of-the-four-most-promisingcoronavirus- treatments/
Smee DF, Hurst BL, Egawa H, et al. Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. J Antimicrob Chemother. 2009 Oct;64(4):741-6. doi: 10.1093/jac/dkp274. Epub 2009 Jul 29. PMID: 19643775; PMCID: PMC2740635.
Yoon JJ, Toots M, Lee S, et al. Orally Efficacious Broad- Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrobial Agents and Chemotherapy. 2018 Jul 27;62(8):e00766-18. doi: 10.1128/ AAC.00766-18. PMID: 29891600; PMCID: PMC6105843.
Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses–drug discovery and therapeutic options. Nat Rev Drug Discov. 2016 May;15(5):327-47. doi: 10.1038/nrd.2015.37. Epub 2016 Feb 12. PMID: 26868298; PMCID: PMC7097181.
Zhang Y, Sun W, Svendsen ER, et al. Do corticosteroids reduce the mortality of influenza A (H1N1) infection? A meta-analysis. Crit Care. 2015 Feb 20;19(1):46. doi: 10.1186/s13054-015-0764-5. PMID: 25888424; PMCID: PMC4348153..
Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020 Oct 6;324(13):1330-1341. doi: 10.1001/ jama.2020.17023. PMID: 32876694; PMCID: PMC7489434
who.int (internet). WHO; (actualizado 23 noviembre 2021, citado 14 enero 2022) Disponible en:https://www.who. int/publications/i/item/WHO-2019-nCoV-clinical-2021-2.
Lamontagne F, Agoritsas T, Siemieniuk R, et al. A living WHO guideline on drugs to prevent covid-19. BMJ 2021 Mar 1;372:n526. doi: 10.1136/bmj.n526. PMID: 33649077..
Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. N Engl J Med. 2021 Oct 7;385(15):1382-1392. doi: 10.1056/NEJMoa2102685. Epub 2021 Jul 14. PMID: 34260849; PMCID: PMC8314785
Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2021 Dec 23. doi: 10.1038/s41586-021-04385-3. Epub ahead of print. PMID: 35016194..
Choudhary MC, Chew KW, Deo R, et al. Emergence of SARSCoV- 2 Resistance with Monoclonal Antibody Therapy. medRxiv. medRxiv [Preprint]. 2021 Sep 15:2021.09.03.21263105. doi: 10.1101/2021.09.03.21263105. PMID: 34545376; PMCID: PMC8452115
Hwang YC, Lu RM, Su SC, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science. 2022 Jan 4;29(1):1. doi: 10.1186/s12929-021-00784-w. PMID: 34983527; PMCID: PMC8724751..
Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med. 2021 Nov 18;385(21): 1950. doi: 10.1056/NEJMoa2107934. Epub 2021 Oct 27. PMID: 34706189.
ACTIV-3/Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect Dis. 2021 Dec 23:S1473-3099(21)00751-9. doi: 10.1016/S1473- 3099(21)00751-9. Epub ahead of print. PMID: 34953520; PMCID: PMC8700279.
O'Brien M, Forleo-Neto E, Musser B, et al. Covid-19 Phase 3 Prevention Trial Team. Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19. N Engl J Med. 2021: 23;385(13):1184-1195. doi:10.1056/NEJMoa2109682. Epub 2021 Aug 4.
Weinreich D, Sivapalasingam S, Norton T, et al. REGEN-COV Antibody Cocktail Clinical Outcomes Study in Covid-19 Outpatients. N Engl J Med. 2021 Dec 2;385(23):e81.doi: 10.1056/NEJMoa2108163.
Nih.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 2021 (actualizado febrero 1–2022) (citado febrero 11, 2022). Disponible en: https://www.covid19treatmentguidelines. nih.gov/overview/prevention-of-sars-cov-2/
Lee LY, Cazier JB, Angelis V, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet 2020; 395: 1919-1926. doi: 10.1016/S0140-6736(20)31173-9.
Liu C, Zhao Y, Okwan-Duodu D, et al. COVID-19 in cancer patients: risk, clinical features, and management. Cancer Biol Med. 2020 Aug 15;17(3):519-527. doi: 10.20892/j.issn.2095- 3941.2020.0289. PMID: 32944387; PMCID: PMC7476081.
Cdc.gov (internet) Estados Unidos; CDC; (actualizado el 9 enero 2022)(citado el 11 febrero 2022)Disponible en: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinicalcare/ underlyingconditions.html.
Desai A, Sachdeva S, Parekh T, et al. COVID-19 and Cancer: Lessons From a Pooled Meta-Analysis. JCO Glob Oncol 2020; 6: 557-559. doi: 10.1200/GO.20.00097.
Zong Z, Wei Y, Ren J, et al. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20: 76. doi: 10.1186/s12943-021-01363-1.
Iovino L, Thur LA, Gnjatic S, et al. Shared inflammatory pathways and therapeutic strategies in COVID-19 and cancer immunotherapy. J Immunother Cancer 2021; 9: e002392. doi: 10.1136/jitc-2021-002392.
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021; 11: 316-329. doi: 10.7150/thno.49713.
Sun L, Surya S, Le AN, et al. Rates of COVID-19-related Outcomes in Cancer compared to non-Cancer Patients. medRxiv [Preprint]. 2020 Aug 15:2020.08.14.20174961. doi: 10.1101/2020.08.14.20174961.
García-Suárez J, de la Cruz J, Cedillo Á, et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: lessons from a large population-based registry study. J Hematol Oncol 2020; 13: 133. doi: 10.1186/s13045-020-00970-7.
Martín-Moro F, Marquet J, Piris M, et al. Survival study of hospitalised patients with concurrent COVID-19 and haematological malignancies. Br J Haematol 2020; 190: e16-e20. doi: 10.1111/bjh.16801.
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21: 335-337. doi: 10.1016/S1470- 2045(20)30096-6.
Ruiz-Garcia E, Peña-Nieves A, Alegria-Baños J, et al. Prognostic factors in cancer patients infected with SARSCoV- 2: a Latin American country results. Ther Adv Chronic Dis 2021 26; 12: 20406223211047755. doi: 10.1177/ 20406223211047755.
De la Rosa-Martínez D, Aranda-Audelo M, Martin-Onraet A, et al. Clinical characteristics and outcomes in a cohort of oncologic patients with COVID-19 during the first year of the pandemic in Mexico. Cancer Med 2022. doi: 10.1002/ cam4.4582.
Heil EL, Kottilil S. The goldilocks time for Remdesivir - Is any indication just right? N Engl J Med. 2021 Dec 22. doi: 10.1056/NEJMe2118579
Mouffak S, Shubbar Q, Saleh E, at al. Recent advances in management of COVID-19: A review. Biomed Pharmacother 2021; 143:112107. doi: 10.1016/j.biopha. 2021.112107.
Weinreich DM, Sivapalasingam S, Norton T, et al. REGENCOV Antibody Combination and Outcomes in Outpatients with Covid-19. N Engl J Med 2021; 385: e81. doi: 10.1056/ NEJMoa2108163.
Puing AG, Ho S, Frankel P, et al. SARS-CoV-2 Specific Monoclonal Antibody for the Treatment of Mild-to-Moderate COVID-19 in Cancer Patients: A Single-center Experience. J Infect Dis 2021: jiab406. doi: 10.1093/infdis/jiab406.
Guven DC, Sahin TK, Kilickap S, et al. Antibody Responses to COVID-19 Vaccination in Cancer: A Systematic Review. Front Oncol 2021; 11: 759108. doi: 10.3389/fonc.2021.759108.
Tran S, Truong TH, Narendran A. Evaluation of COVID-19 vaccine response in patients with cancer: An interim analysis. Eur J Cancer 2021; 159: 259-274. doi: 10.1016/j. ejca.2021.10.013.
Mahase E. Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021; 375: n2713. doi: 10.1136/bmj.n2713.