2021, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2021; 23 (3)
Resistencia a la fractura y la cantidad total de burbujas en resinas compuestas de dientes tratados endodónticamente
Tekçe N, Aydemir S, Demirci M, Tuncer S, Bozkaya S, Sevilay YE, Akman S
Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 75-86
Archivo PDF: 242.32 Kb.
RESUMEN
El objetivo del estudio fue investigar la resistencia a la fractura de
diferentes resinas compuestas y la cantidad de burbujas en resinas posteriores
convencionales, resinas fluidas de alto flujo, resinas fluidas tipo bulk-fill y resinas
reforzados con fibras. Cuarenta y cuatro premolares mandibulares libres de caries,
recién extraídos, fueron usados para este estudio. Los dientes se prepararon para
el tratamiento de conductos radiculares y las cavidades para prepararlos para las
restauraciones. Los especímenes se dividieron en cuatro grupos: Grupo-1: Estelite
Posterior; Grupo-2: Estelite Flow Quick High Flow; Grupo-3: Estelite Bulk-fill Flow;
Grupo-4: everX Posterior. Un espécimen de cada grupo experimental fue examinado
usando micro-CT para realizar la medición de las burbujas. Los valores de resistencia
a la fractura de los compuestos de alto flujo, flujo de relleno, reforzados con fibra y
microhíbridos convencionales fueron similares (p=0,497). EverX Posterior mostró los
valores más altos de resistencia a la fractura (841,1±149,4 N), seguido de Estelite
Bulk-fill Flow (822,8±170,8 N). El volumen de las burbujas (%) obtenido del análisis
de Micro-TC reveló que las restauraciones con revestimiento de alto flujo o con flujo
de relleno a granel presentaban más huecos. El compuesto reforzado con fibra mostró
el menor porcentaje de volumen de incorporación de vacíos y los resultados más altos
de resistencia a la fractura.
REFERENCIAS (EN ESTE ARTÍCULO)
Park J., Chang J., Ferracane J., Lee I.B. How should composite be layered to reduce shrinkage stress: incremental or bulk-filling? Dent Mater. 2008; 24 (11): 1501-5.
Opdam N.J., Roeters J.J., Peters T.C., Burgersdijk R.C., Teunis M. Cavity wall adaptation and voids in adhesive Class I resin composite restorations. Dent Mater. 1996; 12 (4): 230-5.
Baudin C., Osorio R., Toledano M., de Aza S. Work of fracture of a composite resin: fracture-toughening mechanisms. J Biomed Mater Res A. 2009; 89 (3): 751-8.
Carrera C.A., Lan C., Escobar-Sanabria D., Li Y., Rudney J., Aparicio C., Fok A. The use of micro-CT with image segmentation to quantify leakage in dental restorations. Dent Mater. 2015; 31 (4): 382-90.
Li H., Li J., Yun X., Liu X., Fok A.S. Non-destructive examination of interfacial debonding using acoustic emission. Dent Mater. 2011; 27 (10): 964-71.
Neves A.A., Jaecques S., Van Ende A., Cardoso M.V., Coutinho E., Lührs A.K., Zicari F., Van Meerbeek B. 3D-microleakage assessment of adhesive interfaces: exploratory findings by μCT. Dent Mater. 2014; 30 (8): 799-807.
Kakaboura A., Rahiotis C., Watts D., Silikas N., Eliades G. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent Mater. 2007; 23 (3): 272-8
Chiang Y.C., Rösch P., Dabanoglu A., Lin C.P., Hickel R., Kunzelmann K.H. Polymerization composite shrinkage evaluation with 3D deformation analysis from microCT images. Dent Mater. 2010; 26 (3): 223-31.
Han S.H., Park S.H. Comparison of internal adaptation in Class II bulk-fill composite restorations using micro-CT. Oper Dent. 2017; 42 (2): 203-14.
Chuang S.F., Liu J.K., Chao C.C., Liao F.P., Chen Y.H. Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent. 2001; 85 (2): 177-83.
Lazarchik D.A., Hammond B.D., Sikes C.L., Looney S.W., Rueggeberg F.A. Hardness comparison of bulk-filled/transtooth and incremental-filled/occlusally irradiated composite resins. J Prosthet Dent. 2007; 98 (2): 129-40.
Abbas G., Fleming G.J., Harrington E., Shortall A.C., Burke F.J. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003; 31 (6): 437-44.
Neiva I.F., de Andrada M.A., Baratieri L.N., Monteiro Júnior S., Ritter A.V. An in vitro study of the effect of restorative technique on marginal leakage in posterior composites. Oper Dent. 1998; 23 (6): 282-9.
Tekçe N., Pala K., Tuncer S., Demirci M., Serim M.E. Influence of polymerisation method and type of fibre on fracture strength of endodontically treated teeth. Aust Endod J. 2017; 43 (3):115-22
Tekçe N., Pala K., Demirci M., Tuncer S., Özel E., Göktürk S.A., Karakuyu H. Fracture strength of composite resins for endodontically treated molars. J Adhes Sci Technol. 2016; 30 (24); 2745-56.
Tekçe N., Pala K., Demirci M., Tuncer S. Influence of different composite materials and cavity preparation designs on the fracture resistance of mesio-occluso-distal inlay restoration. Dent Mater J. 2016; 35 (3): 523-31.
Burke F.J., Wilson N.H., Watts D.C. The effect of cavity wall taper on fracture resistance of teeth restored with resin composite inlays. Oper Dent. 1993; 18 (6): 230-6.
Soares P.V., Santos-Filho P.C., Martins L.R., Soares C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: fracture resistance and fracture mode. J Prosthet Dent. 2008; 99 (1): 30-7.
Saridag S., Sari T., Ozyesil A.G., Ari Aydinbelge H. Fracture resistance of endodontically treated teeth restored with ceramic inlays and different base materials. Dent Mater J. 2015; 34 (2): 175-80.
Sarıdağ S., Helvacıoğlu-Yiğit D., Özcan M., Avcu E., Kızıltaş G. Micro-computerized tomography analysis of cement voids and pull-out strength of glass fiber posts luted with self-adhesive and glass-ionomer cements in the root canal. J Adhes Sci Technol. 2016; 30 (14): 1585-95.
Ozsevik A.S., Yildirim C., Aydin U., Culha E., Surmelioglu D. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth. Aust Endod J. 2016; 42 (2): 82-7.
Taha N.A., Palamara J.E., Messer H.H. Fracture strength and fracture patterns of root filled teeth restored with direct resin restorations. J Dent. 2011; 39 (8): 527-35.
Steele A., Johnson B.R. In vitro fracture strength of endodontically treated premolars. J Endod. 1999; 25 (1): 6-8.
Reeh E.S., Messer H.H., Douglas W.H. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod. 1989; 15 (11): 512-6.
Owen C.P. Factors influencing the retention and resistance of preparations for cast intracoronal restorations. J Prosthet Dent. 1986; 55 (6): 674-7.
St-Georges A.J., Sturdevant J.R., Swift E.J. Jr., Thompson J.Y. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent. 2003; 89 (6): 551-7.
Atalay C., Yazici A.R., Horuztepe A., Nagas E., Ertan A., Ozgunaltay G. Fracture resistance of endodontically treated teeth restored with bulk-fill, bulk-fill flowable, fiber-reinforced, and conventional resin composite. Oper Dent. 2016; 41 (5): 131-40.
Kemaloglu H., Emin Kaval M., Turkun M., Micoogullari Kurt S. Effect of novel restoration techniques on the fracture resistance of teeth treated endodontically: An in vitro study. Dent Mater J. 2015; 34 (5): 618-22.
Garoushi S., Säilynoja E., Vallittu P.K., Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013; 29 (8): 835-41.
Garoushi S., Vallittu P.K., Lassila L.V. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent Mater. 2007; 23 (11): 1356-62.
Toz T., Tuncer S., Bozkurt F.O., Tuncer A.K., Bag H.G. The effect of bulk-fill flowable composites on the fracture resistance and cuspal deflection of endodontically treated premolars. J Adhes Sci Technol. 2015; 29 (15): 1581-92.
Yasa B., Arslan H., Yasa E., Akcay M., Hatirli H. Effect of novel restorative materials and retention slots on fracture resistance of endodontically-treated teeth. Acta Odontol Scand. 2016; 74 (2): 96-102.
Ilie N., Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Invest. 2009; 13 (4): 427-38.
Bayne S.C., Thompson J.Y., Swift E.J. Jr., Stamatiades P., Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc. 1998; 129 (5): 567-77.
Opdam N.J., Roeters JJ, Joosten M, Veeke Ov. Porosities and voids in Class I restorations placed by six operators using a packable or syringable composite. Dent Mater. 2002; 18(1): 58-63.
Chuang S.F., Liu J.K., Chao C.C., Liao F.P., Chen Y.H. Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent. 2001; 85 (2): 177-83.
Nazari A., Sadr A., Saghiri M.A., Campillo- Funollet M., Hamba H., Shimada Y., Tagami J., Sumi Y. Non-destructive characterization of voids in six flowable composites using swept-source optical coherence tomography. Dent Mater. 2013; 29 (3): 278-86.