2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
2-Oxazolina: Polimerización y síntesis de macromonómeros
Ludeña-Huaman MA
Idioma: Español
Referencias bibliográficas: 24
Paginas:
Archivo PDF: 237.98 Kb.
RESUMEN
En las dos últimas décadas ha resurgido la química de la poli(2-oxazolina) debido a su fácil síntesis y capacidad para
modular su estructura química, así como sus propiedades. Además, las poli(2-oxazolina)s son biocompatibles y muchas
responden a un cambio de la temperatura. Los macromonómeros de 2-oxazolina usualmente son empleados como material
de partida para realizar la síntesis a medida de copolímeros injertados, copolímeros de tipo estrella y dendrímeros.
También los macromonómeros son introducidos en la síntesis de materiales con estructuras más complejas como los
hidrogeles o nanogeles. Es motivo por el que, en este manuscrito se dan a conocer aspectos químicos fundamentales e
importantes sobre la polimerización y preparación de los macromonómeros de 2-oxazolina, por el método del iniciado
y terminador de la polimerización viviente. Se analiza la importancia del iniciador, el terminador y del sustituyente
en la 2-oxazolina.
REFERENCIAS (EN ESTE ARTÍCULO)
Bloksma, M. M., Weber, C., Perevyazko, I. Y., Kuse, A., Baumgärtel, A., Vollrath, A., Hoogenboom, R. & Schubert, U. S. (2011). Poly(2-cyclopropyl-2-oxazoline): From Rate Acceleration by Cyclopropyl to Thermoresponsive Properties. Macromolecules, 44(11), 4057–4064. https:// doi.org/10.1021/ma200514n
Dargaville, T. R., Park, J. R. & Hoogenboom, R. (2018). Poly(2- oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. Macromolecular Bioscience, 18(6), 1800070. https://doi.org/10.1002/mabi.201800070
De la Rosa, V. R. (2014). Poly(2-oxazoline)s as materials for biomedical applications. Journal of Materials Science: Materials in Medicine, 25(5), 1211–1225. https://doi. org/10.1007/s10856-013-5034-y
Fijten, M. W. M., Hoogenboom, R. & Schubert, U. S. (2008). Initiator effect on the cationic ring-opening copolymerization of 2-ethyl-2-oxazoline and 2-phenyl-2-oxazoline. Journal of Polymer Science Part A: Polymer Chemistry, 46(14), 4804–4816. https://doi.org/10.1002/pola.22814
Glassner, M., D’hooge, D. R., Young Park, J., Van Steenberge, P. H. M., Monnery, B. D., Reyniers, M.-F. & Hoogenboom, R. (2015). Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. European Polymer Journal, 65, 298–304. https://doi.org/10.1016/j. eurpolymj.2015.01.019
Hadjichristidis, N., Pitsikalis, M., Iatrou, H. & Pispas, S. (2003). The Strength of the Macromonomer Strategy for Complex Macromolecular Architecture: Molecular Characterization, Properties and Applications of Polymacromonomers. Macromolecular Rapid Communications, 24(17), 979– 1013. https://doi.org/10.1002/marc.200300050
Hoogenboom, R. (2009). Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angewandte Chemie International Edition, 48(43), 7978–7994. https://doi. org/10.1002/anie.200901607
Hoogenboom, R. & Schlaad, H. (2017). Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polymer Chemistry, 8(1), 24–40. https://doi.org/10.1039/ C6PY01320A
Hoogenboom, R., Thijs, H. M. L., Jochems, M. J. H. C., Lankvelt, B. M. van, Fijten, M. W. M. & Schubert, U. S. (2008). Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(Nisopropylacrylamide)?. Chemical Communications, 44, 5758–5760. https://doi.org/10.1039/B813140F
Kelly, A. M. & Wiesbrock, F. (2012). Strategies for the Synthesis of Poly(2-Oxazoline)-Based Hydrogels. Macromolecular Rapid Communications, 33(19), 1632-1647. https://doi. org/10.1002/marc.201200333
Kobayashi, S., Tokuzawa, T. & Saegusa, T. (1982). Cationic ringopening isomerization polymerization of 2-[p-(substituted) phenyl]-2-oxazolines. Effects of the substituent on the reactivities. Macromolecules, 15(6), 707-710. https://doi. org/10.1021/ma00231a005
Li, T., Tang, H. & Wu, P. (2015). Molecular Evolution of Poly(2-isopropyl-2-oxazoline) Aqueous Solution during the Liquid–Liquid Phase Separation and Phase Transition Process. Langmuir, 31(24), 6870–6878. https://doi. org/10.1021/acs.langmuir.5b01009
Lin, P., Clash, C., Pearce, E. M., Kwei, T. K. & Aponte, M. A. (1988). Solubility and miscibility of poly(ethyl oxazoline). Journal of Polymer Science Part B: Polymer Physics, 26(3), 603–619. https://doi.org/10.1002/polb.1988.090260312
Luxenhofer, R., Bezen, M. & Jordan, R. (2008). Kinetic Investigations on the Polymerization of 2-Oxazolines Using Pluritriflate Initators. Macromolecular Rapid Communications, 29(18), 1509–1513. https://doi. org/10.1002/marc.200800293
Nuyken, O., Maier, G., Groß, A. & Fischer, H. (1996). Systematic investigations on the reactivity of oxazolinium salts. Macromolecular Chemistry and Physics, 197(1), 83–95. https://doi.org/10.1002/macp.1996.021970106
Obeid, R., Tanaka, F. & Winnik, F. M. (2009). Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water. Macromolecules, 42(15), 5818–5828. https://doi. org/10.1021/ma900838v
Patton, D. L. & Advincula, R. C. (2006). A Versatile Synthetic Route to Macromonomers via RAFT Polymerization. Macromolecules, 39(25), 8674–8683. https://doi. org/10.1021/ma061382h
Pizzi, D., Humphries, J., Morrow, J. P., Fletcher, N. L., Bell, C. A., Thurecht, K. J. & Kempe, K. (2019). Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal, 121, 109258. https://doi.org/10.1016/j. eurpolymj.2019.109258
Ramírez, J. M. C. (2020). Macromonómeros: Síntesis y Aplicaciones. Revista Bases de la Ciencia, 5(1), 15–40. https://doi.org/10.33936/rev_bas_de_la_ciencia. v5i1.1904
Rempp, P. F. & Franta, E. (1984) Macromonomers: Synthesis, characterization and applications. In: Polymerization Reactions. Advances in Polymer Science, 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12793- 3_6
Schlüter, A. D. & Rabe, J. P. (2000). Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition, 39(5), 864–883. https://doi.org/10.1002/(SICI)1521- 3773(20000303)39:5<864::AID-ANIE864>3.0.CO;2-E
Vazaios, A., Lohse, D. J. & Hadjichristidis, N. (2005). Linear and Star Block Copolymers of Styrenic Macromonomers by Anionic Polymerization. Macromolecules, 38(13), 5468–5474. https://doi.org/10.1021/ma0473364
Verbraeken, B., Monnery, B. D., Lava, K. & Hoogenboom, R. (2017). The chemistry of poly(2-oxazoline)s. European Polymer Journal, 88,451–469. https://doi.org/10.1016/j. eurpolymj.2016.11.016
Yamashita, Y. (1993). Chemistry and industry of macromonomers. Hüthig & Wepf Verlag.