2021, Número 1
Desregulación metabólica y consecuencias clínicas por el consumo de fructosa
Idioma: Español
Referencias bibliográficas: 52
Paginas:
Archivo PDF: 323.83 Kb.
RESUMEN
La industria alimentaria ha incrementado su tasa de producción por alimentos siempre disponibles, listos para su consumo o que requieren de una mínima preparación, pero sin que aumente su calidad y sólo para satisfacer la demanda de una sociedad moderna. La característica que tienen en común estos alimentos, es el uso de un producto derivado del almidón del maíz denominado Jarabe de Maíz con un alto contenido de Fructosa (JMAF), el almidón es ampliamente usado en la fabricación de este tipo de alimentos procesados, y cuyo consumo desmedido está asociado con el incremento en la tasa de obesidad y de trastornos metabólicos.El metabolismo de la fructosa, conlleva a la disminución de la cantidad de energía disponible en el organismo. Simultáneamente, la producción de metabolitos ocasiona cambios en las vías de señalización celular promoviendo un incremento en la cantidad de lípidos como los triglicéridos y el colesterol de muy baja densidad. Los altos niveles de estas moléculas favorecen condiciones que encaminan a la obesidad y a la resistencia a la insulina, propiciando el desarrollo de la diabetes mellitus tipo 2, hiperuricemia e inflamación que por lo general son la base para el origen del cáncer y el inicio de las enfermedades neurológicas. Esta revisión se centra en la relación entre la fructosa y estas enfermedades y su posible mecanismo de acción.
REFERENCIAS (EN ESTE ARTÍCULO)
Alten, B., Yesiltepe, M., Bayraktar, E., Tas, S. T., Gocmen, A. Y., Kursungoz, C., Martinez, A. & Sara, Y. (2018). High fructose corn syrup consumption in adolescent rats causes bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. British Journal of Pharmacology, 175(24), 4450-4463. DOI:10.1111/ bph.14500.
Aune, D., Chan, D. S. M., Vieira, A. R., Navarro Rosenblatt, D. A.,Vieira, R., Greenwood, D. C., Cade, J. E., Burley, V. J. & Norat, T. (2012). Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Annals of Oncololgy, 23(10), 2536-2546. DOI:10.1093/annonc/mds076.
Comín-Anduix, B., Boren, J., Martinez, S., Moro, C., Centelles, J. J., Trebukhina, R., Petushok, N., Lee, W. P., Boros, L. G. & Cascante, M. (2001). The effect of thiamine supplementation on tumour proliferation. European Journal of Biochemistry, 268(15), 4177-4182. DOI:10.1046/j.1432- 1327.2001.02329.x.
Cox, C. L., Stanhope, K. L., Schwarz, J., Graham, J. L., Hatcher, B., Griffen, S. C., Bremer, A. A., Berglund, L., McGahan, J. P., Keim, N. L. & Havel, P. J. (2012). Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutrition & Metabolism, 9(1), 68. DOI:10.1186/1743-7075-9-68
De Sousa Rodrigues, M. E., Bekhbat, M., Houser, M. C., Chang, J., Walker, D. I., Jones, D. P., Oller do Nascimento, C. M. P., Barnum, C. J. & Tansey, M. G. (2017). Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behavior Immunity, 59(1), 158-172. DOI: 10.1016/j. bbi.2016.08.021.
Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Slezak, L. A., Andersen, D. K., Hundal, R. S., Rothman, D. L., Petersen, K. F. & Shulman, G. I. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Journal of Clinical Investigation, 103(2), 253- 259. DOI:10.1172/jci5001.
Genkinger, J. M., Li, R., Spiegelman, D., Anderson, K. E., Albanes, D., Bergkvist, L., Bernstein, L., Black, A., Van den Brandt, P. A., English, D. R., Freudenheim, J. L., Fuchs, C. S., Giles, G. G., Giovannucci, E., Goldbohm, R. A., Horn-Ross, P. L., Jacobs, E. J., Koushik, A., Männistö, S., Marshall, J. R., Miller, A. B., Patel, A. V., Robien, K., Rohan, T. E., Schairer, C., Stolzenberg-Solomon, R., Wolk, A., Ziegler, R. G. & Smith-Warner, S. A. (2011). Coffee, tea, and sugar-sweetened carbonated soft drink intake and pancreatic cancer risk: A pooled analysis of 14 cohort studies. Cancer Epidemiology Biomarkers & Prevention, 21(2), 305-318. DOI: 10.1158/1055-9965.epi-11-0945-t.
Goncalves M. D., Lu, C., Tutnauer, J., Hartman, T. E., Hwang, S. K., Murphy, C. J., Pauli, C., Morris, R., Taylor, S., Bosch, K., Yang, S., Wang, Y., Van Riper, J., Lekaye, H., C., Roper, J., Kim, Y., Chen, Q., Gross, S. S., Rhee, K., Y., Cantley, L. C. & Yun, J. 2019. High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 363(6433), 1345- 1349. DOI:10.1126/science.aat8515.
Johnson, R. K., Appel, L. J., Brands, M., Howard, B. V., Lefevre, M., Lusting, R. H., Sacks, F., Steffen, L. M. & Wylie-Rosett, J. (2009). Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation, 120(11), 1011– 1020. DOI:10.1161/circulationaha.109.192627.
Kammoun, H. L., Chabanon, H., Hainault, I., Luquet, S., Magnan, C., Koike, T., Ferré, P. & Foufelle, F. (2009). GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. Journal of Clinical Investigation, 119(5), 1201-1215. DOI:10.1172/ jci37007.
Koo, H. Y., Wallig, M. A., Chung, B. H., Nara, T. Y., Cho, B. H. S.& Nakamura, M. T. (2008). Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica et Biophysica Acta, 1782(5), 341-348. DOI: 10.1016/j. bbadis.2008.02.007.
Lê, K. A., Faeh, D., Stettler, R., Ith, M., Kreis, R., Vermathen, P., Boesch, C., Ravussin, E. & Tappy, L. (2006). A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. The American Journal of Clinical Nutrition, 84(6), 1374- 1379. DOI:10.1093/ajcn/84.6.1374.
Nöthlings, U., Murphy, S. P., Wilkens, L. R., Henderson, B. E. & Kolonel, L. N. (2007). Dietary glycemic load, added sugars, and carbohydrates as risk factors for pancreatic cancer: The multiethnic cohort study. The American Journal of Clinical Nutrition,86(5), 1495-1501. DOI:10.1093/ajcn/86.5.1495.
Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., Hatcher, B., Cox, C.L., Dyachenko, A., Zhang, W., McGahan, J. P., Seibert, A., Krauss, R. M., Chiu, S., Schaefer, E. J., Ai, M., Otokozawa, S., Nakajima, K., Nakano, T., Beysen, C., Hellerstein, M. K., Berglund, L. & Havel, P. J. (2009). Consuming fructose-sweetened, not glucosa-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in verweight/obese humans. The Journal of Clinical Investigation, 119(5), 1322-1334. DOI: 10.1172/ JCI37385.
Szendroedi, J., Yoshimura, T., Phielix, E., Koliaki, C., Marcucci, M., Zhang, D., Jelenik, T., Müller, J., Herder, C., Nowotny, P., Shulman, G. I. & Roden, M. (2014). Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proceedings of the National Academy of Sciences, 111(26), 9597-9602. DOI: 10.1073/ pnas.1409229111.
Tsai, J., Zhang, R., Qiu, W., Su, Q., Naples, M. & Adeli, K. (2009). Inflammatory NF-κB activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296(6), G1287-G1298. DOI:10.1152/ ajpgi.90540.2008.