2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
El receptor S1P1 de la esfingosina1-fosfato: avances en el conocimiento de su estructura, función e importancia biomédica
Martínez-Morales JC, García-Sáinz JA, Romero-Ávila MT
Idioma: Español
Referencias bibliográficas: 83
Paginas:
Archivo PDF: 398.00 Kb.
RESUMEN
La esfingosina1-fosfato (S1P) es un metabolito intermediario en el catabolismo de la esfingomielina y un “lípido bioactivo”, con la
capacidad de funcionar como hormona local al modular las funciones de distintas células y tejidos; en las células regula una gran
variedad de respuestas, como la migración, la diferenciación y la sobrevivencia y en los tejidos la angiogénesis, la cardiogénesis, el
desarrollo de las extremidades, la formación del sistema linfático y nervioso, entre otros procesos. El receptor S1P
1 es un miembro de
la familia de receptores acoplados a proteínas G que media muchas de las acciones de la S1P. Este receptor tiene una gran importancia
médica por estar involucrado en la patogenia de la esclerosis múltiple. En condiciones fisiológicas el receptor S1P
1 se expresa en la
superficie de los linfocitos y regula la salida de esas células de los ganglios linfáticos por quimiotaxis. Por otra parte, la esclerosis
múltiple es una enfermedad crónica, autoinmune y neurodegenerativa del sistema nervioso central, asociada en muchos casos con
una progresión irreversible que conduce a la discapacidad. En la patogenia de esta enfermedad, después de que los linfocitos salen de
los ganglios linfáticos, se encuentran en el torrente sanguíneo y atraviesan la barrera hematoencefálica invaden el sistema nervioso
central, favorecen la secreción de citocinas inflamatorias que activan a los macrófagos y a otras células, destruyendo las vainas de
mielina; además, los linfocitos B producen anticuerpos contra los componentes de la mielina incrementando la desmielinización, el
daño axonal y neuronal que caracterizan a los pacientes con esclerosis múltiple.
REFERENCIAS (EN ESTE ARTÍCULO)
Albert, R., Hinterding, K., Brinkmann, V., Guerini, D., Mueller- Hartwieg C. & Knecht, H. (2005). Novel immunomodulator FTY720 is phosphorylated in rats and humans to form a single stereoisomer. Identification, chemical proof, and biological characterization of the biologically active species and its inactive enantiomer. J. Med. Chem., 48, 5373–5377. DOI:10.1021/jm050242f
Al-Shamma, H., Lehmann-Bruinsma, K., Carroll, C., Solomon, M., Komori, H. K., Peyrin-Biroulet, L. & John, A. (2019). The Selective Sphingosine 1-Phosphate Receptor Modulator Etrasimod Regulates Lymphocyte Trafficking and Alleviates Experimental Colitis. J. Pharmacol. Exp. Ther., 369, 311–317. DOI:1124/jpet.118.254268
Arnon, T. I., Xu, Y., Lo, C., Pham, J., An, S. & Cyster, J. G. (2011). GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science, 333, 1898-1903. DOI: 10.1126/science.1208248
Benovic, J. L., Pike, L. J., Cerione, R. J., Staniszewski, C., Yoshimasa, T. & Codina, J. (1985). Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J. Biol. Chem., 260, 7094–7101.
Berry, D. J., Paganoni, N., Macklin, A. E., Goyal, N., Rivner, M., Simpson, E., Appel, S., Grasso, L. D., Mejia, N., Mateen, F., Gill, F., Vieira, F., Tassinari, V. & Perrin, S. (2017). Phase IIa trial of fingolimod for amyotrophic lateral sclerosis demonstrates acceptable acute safety and tolerability. Muscle Nerve, 56, 1077-1084. DOI:10.1002/ mus.25733.
Billich, A. F., Bornancin, P. D., Mechtcheriakova, D., Nicole, U. & Baumruker, T. (2003). Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem., 278, 47408-47415. DOI: 10.1074/jbc. M307687200.
Bolli, M. H., Abele, S., Binkert, C., Bravo, R., Buchmann, S., Bur, D., Gatfield, J., Hess, P., Kohl, C. & Mangold, C. (2010). 2-imino-thiazolidin-4-one derivatives as potent, orally active S1P1 receptor agonists. J. Med. Chem., 53, 4198-4211. DOI: 10.1021/jm100181s.
Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S. & Hof, R. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 277, 21453–21457. DOI: 10.1074/jbc.C200176200.
Brinkmann, V. (2007). Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. Ther., 115, 84–105. DOI: 10.1016/j.pharmthera.2007.04.006.
Buzard, D. J., Kim, S. H., Lopez, L., Kawasaki, A., Zhu, X., Moody, J., Thoresen, L., Calderon, I., Ullman, B. & Han, S. (2014). Discovery of APD334: Design of a Clinical Stage Functional Antagonist of the Sphingosine-1-phosphate-1 Receptor. ACS Med. Chem. Lett., 5, 1313-1317. DOI: 10.1021/ml500389m.
Chae, S. S., Paik, J. H., Allende, M. L., Proia, R. L. & Hla, T. (2004). Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/ VEGF axis. Dev. Biol., 268, 441-447. DOI: 10.1016/j. ydbio.2004.01.001.
Chalfant, C. E. & Spiegel, S. (2005). Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell. Sci., 118, 4605–4612. DOI: 10.1242/jcs.02637
Chavez, A., Schmidt, T., Yazbeck, P., Rajput, C., Desai, B., Sukriti, S., Adams-Giantsos, K., Knezevic, N., Malik, B. A. & Mehta, D. (2015). S1P1 Tyr143 phosphorylation downregulates endothelial cell surface S1P1 expression and responsiveness. J. Cell. Sci., 128, 878-887. DOI: 10.1242/jcs.154476.
Chun, J. & Hartung, H. P. (2010). Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 33, 91-101. DOI: 10.1097/ WNF.0b013e3181cbf825
Chun, J., Hla, T., Lynch, K. R., Spiegel, S. & Mololenaar, W. H. (2010). Internacional Union of basic and clinic Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol. Rev., 62, 579-587. DOI: 10.1124/ pr.110.003111.
ClinicalTrials.gov. (2017). A phase II, multicentre, randomised, doubleblind, parallel group, placebo-controlled, dosefinding study to evaluate the safety and efficacy of three different oral doses ofMT-1303 administered for a period of 24 weeks in subjects with relapsingremitting multiple sclerosis. Disponible en línea en: https://clinicaltrials.gov/ ct2/show/NCT01742052?term=MT-1303&rank=5.
Comabella, M., Montalban, X., Munz, C. & Lunemann, J. D. (2010). Targeting dendritic cells to treat multiple sclerosis. Nat. Rev. Neurol., 6, 499–507. DOI: 10.1038/nrneurol.2010.112. -Compston, A. & Coles, A. 2002. Multiple sclerosis. LANCET., 359, 1221–1231.DOI: 10.1016/S0140- 6736(02)08220-X.
D’Ambrosio, D., Freedman, M. S. & Prinz, J. (2016). Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immunemediated diseases. Ther. Adv. Chronic. Dis., 7, 18-33. DOI: 10.1177/2040622315617354.
Dong-Seok, K.,Seo-Hyoung, P.,Yun-Mi, J., Sun-Bang, K.,Arlo, J. M., & Kyoung-Chan, P. (2011). Sphingosine-1-phosphate decreases melanin synthesis via microphthalmia-associated transcription factor phosphorylation through the S1P3 receptor subtype. J. Pharm. Pharmacol., 63, 409-416. DOI: 10.1111/j.2042-7158.2010.01223.x.
Fieger, C. B., Huang, M. C., Van Brocklyn, J. R. & Goetzl, E. J. (2005). Type 1-phosphate G protein-coupled receptor signaling of lymphocyte functions requires sulfatation of its extracellular amino-terminal tyrosines. FASEBJ., 19, 1926-8. DOI: 10.1096/fj.05-4476fje.
Forbes, R. D., Cernacek, P., Zheng, S., Gomersall, M. & Guttmann, R. D. (1996). Increased endothelin expression in a rat cardiac allograft model of chronic vascular rejection. Transplantation. 15, 791-797. DOI: 10.1097/00007890- 199603150-00020.
Fryer, M. R., Akalushi, M., Paul, C. H., Suzanne, N. M., Rong, R. C., Kyle, E. H., Roger, M. D., Joshua, C. H., Lori, P., Louise, K. M. & Glenn, A. R. (2012). The Clinically-tested S1P Receptor Agonists, FTY720 and BAF312, Demonstrate Subtype-Specific Bradycardia (S1P1) and Hypertension (S1P3) in Rat. PLOS ONE., 7, e52985. DOI: 10.1371/ journal.pone.0052985.
Futerman, H. A. & Hannun, A. Y. (2004). The complex life of simple sphingolipids. European Molecular Biology Organization,5, 1777-1782. DOI: 10.1038/ sj.embor.7400208.
Fujino, M. (2003). Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J. Pharmacol. Exp. Ther., 305, 70–77. DOI: 10.1124/ jpet.102.045658.
Gaengel, K., Niaudet, C., Hagikura, K., Laviña, B., Muhl, L., Hofmann, J. J., Ebarasi, L., Nyström, S., Rymo, S. & Chen, L. L. (2012). The sphingosine-1-phosphate receptor S1P1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGfr2. Dev. Cell., 23, 587-599. DOI: 10.1016/j.devcel.2012.08.005.
Gasperini & Ruggieri. (2012). Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, fingolimod will change therapeutic paradigm approach. Drug. Des. Devel. Ther., 6, 175-186. DOI: 10.2147/DDDT.S8927.
Gergely, P., Nuesslein-Hildesheim, B., Guerini, D., Brinkmann, V., Traebert, M., Bruns, C., Pan, S., Gray, N. S., Hinterding, K. & Cooke, N. G. (2012). The selective sphingosine 1kihara-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br. J. Pharmacol., 167, 1035-1047. DOI: 10.1111/j.1476-5381.2012.02061.x.
Golfier, S., Shinichi, K., Tobias, S., Tomomi, T., Galya, V., Ariel, H., Achtman, M. H. G., Susan, J. A., Wiekowaki, M., Kremmer, E., Yasuhisa, E., Sergio A. L., Kevin, B. B. & Lipp, M. (2010). Shaping of terminal megakaryocytedifferentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4.The FASEBJ., 24, 4701-4710. DOI: 10.1096/fj.09-141473.
Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., Luo, C., Marmorstein, R., Kordula, T. & Milstien, S. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254-1257. DOI: 10.1126/science.1176709.
Hanson, M. A., Roth, C. B., Jo, E., Griffith, M. T., Scott, F. L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S. M., Schuerer, S. C., Sanna, M. G., Han, G. W., Kuhn, P., Rosen, H. & Stevens, R.C. (2012). Crystal structure of a lipid G protein-coupled receptor. Science, 335, 851-855. DOI: 10.1126/science.1215904.
Hausdorff, W. P., Caron, M. G. & Lefkowitz, R. J. (1990). Turning off the signal desensitization of beta-adrenergic receptor function. FASEBJ., 4, 2881–2889.
Hla, T., Venkataram, K. & Michaud, J. (2008). The vascular S1P gradient-cellular sources and biological significance. Biochimica et Biophysica Acta, 1781, 477-482. DOI: 10.1016/j.bbalip.2008.07.003.
Hla, T. & Maciag, T. (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem., 265, 9308-13.
Ishii, I., Friedman, B., Ye, X., Kawamura, S., McGiffert, C. & Contos, J. J. (2001). Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J. Biol. Chem., 276, 33697–33704. DOI: 10.1074/jbc.M104441200.
Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., Walsh, F. S., Pangalos, M. N., Arimura, N., Kaibuchi, K., Zalc, B. & Lubetzki, C. (2005). Edg8/S1P5: An Oligodendroglial Receptor with Dual Function on Process Retraction and Cell Survival. The Journal of Neuroscience, 25, 1459-1469. DOI: 10.1523/JNEUROSCI.4645-04.2005.
Kang, Z., Altuntas, C. Z., Gulen, M. F., Liu, C., Giltiay, N., Qin, H., Liu, L., Qian, W., Ransohoff, R. M., Bergmann, C., Stohlman, S., Tuohy, V. K. & Li, X. (2010). Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity, 32, 414-425. DOI: 10.1016/j. immuni.2010.03.004.
Kelly, E., Bailey, C. P. & Henderson, G. (2008). Agonist-selective mechanisms of GPCR desensitization. Br. J. Pharmacol., 153, S379-S388. DOI: 10.1038/sj.bjp.0707604.
Kenakin, Terry. (2019). Biased Receptor Signaling in Drug Discovery. Pharmacol. Rev., 71, 267-315. DOI: 10.1124/ pr.118.016790.
Kihara, Y., Mizuno, H. & Chun. J. 2015. Lysophospholipid receptors in drug discovery. Exp. Cell. Res., 333. 171-177. DOI: 10.1016/j.yexcr.2014.11.020
Kivisakk, P., Don, J., Melissa, K.,Keith, S., Corinna, T., Barbara, T., Jerome, W., Rivka, R., Susan, M., Hans, L. & Richard, M. (2004). Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol., 55, 627–638. DOI: 10.1002/ana.20049.
Kloer, D. P., Rojas, R. I. V., Morivama, K., Vlijmen, T., Murthy, N., Ghirlando, R., van der Sluijs, P., Hurley, H. J. & Bonifacino, S. J. (2010). Assembly of the Biogenesis of Lysosome-related Organelles Complex-3 (BLOC-3) and Its Interaction with Rab9. J. Biol. Chem., 285, 7794-7804. DOI: 10.1074/jbc.M109.069088.
Kono, M., Belyantseva, I. A., Skoura, A., Frolenkov, G. I., Starost, M. F. & Dreier, J. L. (2007). Deafness and stria vascularis defects in S1P2 receptor-null mice. J. Biol. Chem., 282, 10690–10696. DOI: 10.1074/jbc.M700370200.
Kono, M., Mi, Y., Liu, Y., Sasaki, T., Allende, M. L. & Wu, Y. P. (2004). The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem., 279, 29367–29373. DOI: 10.1074/jbc.M403937200.
Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D. Y. (2000). A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature, 406, 192-195. DOI: 10.1038/35018092
Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., Wu, M., Morales Ruiz, M., Sessa, W. C., Alessi, D. R. & Hla, T. (2001). Akt-Mediated Phosphorylation of the G Protein-Coupled Receptor EDG1 Is Required for Endothelial Cell Chemotaxis. Mol. Cel., 8, 693-704. DOI: 10.1016/s1097-2765(01)00324-0.
Legangneux, E., Gardin, A. & Johns, D. (2013). Dose titration of BAF312 attenuates the initial heart rate reducing effect in healthy subjects. Br. J. Clin. Pharmacol., 75, 831-841. DOI: 10.1111/j.1365-2125.2012.04400.x.
Lepley, D., Ji-Hye, P., Timothy, H. & Fernando, F. (2005). The G protein –coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Research., 65, 3788-3795. DOI: 10.1158/0008-5472. CAN-04-2311.
Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X. & Hobson, J. P. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1- phosphate, is essential for vascular maturation. J. Clin. Invest., 106, 951–961. DOI: 10.1172/ JCI10905.
Lohse, M. J., Benovic, J. L., Codina, J., Charon, M. G. & Lefkowitz, R. J. (1990). Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science, 248, 1547-1550. DOI: 10.1126/science.2163110.
MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J. & Grimes, J. R. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur. J. Neurosci., 14, 203–209. DOI: 10.1046/j.0953-816x.2001.01634.x.
Martínez-Morales, J. C., Romero-Ávila, M. T., Reyes-Cruz, G. & García-Sáinz, J. (2018). S1P1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Bioscience Report., 38, 1-15. DOI: 10.1042/ BSR20181612.
Matloubian, M., Lo, C., Cinamon, G., Lesneski, M., Xu, Y., Brinkmann, V., Allende, M., Proia, R. & Cyster, J. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360. DOI: 10.1038/nature02284.
Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S. & Proja, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol., 25, 11113-11121. DOI: 10.1128/MCB.25.24.11113- 11121.2005.
Morquecho-León M. A., Bazúa-Valenti, S., Romero-Ávila M. T. & García-Sáinz, A. (2013). Isoforms of protein Kinase C involved in phorbol ester-induced sphingosine 1-phosphate receptor 1 phosphorylation and desensitization. Biochim. Biophys. Acta., 1843, 327-334. DOI: 10.1016/j. bbamcr.2013.11.002.
Nayak, D., Huo, Y., Kwang, W.,Pushparaj, P.,Kumar, S., Ling, E. & Dheen, S (2010). Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166, 132–144. DOI: 10.1016/j.neuroscience.2009.12.020.
Obinata, H. & Hla, T. (2012). Sphingosine 1-phosphate in coagulation and inflammation. Semin. Inmunopathol., 34, 73-91.
Ohno, T., Ito, A., Ogata, R., Hiraga, Y., Igarashi, Y. & Kihara, A. (2009). Palmitoylation of the sphingosine 1-phosphate receptor S1P is involved in its signaling functions and internalization. Genes Cells., 14, 911-923. DOI: 10.1111/j.1365-2443.2009.01319.x.
Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L. & Lynch, K. R. (2007). Immunosuppressive and antiangiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem., 282, 9082–9089. DOI: 10.1074/ jbc.M610318200.
O’Sullivan, C., Schubart, A., Mir, A. K. & Dev, K. K. (2016). The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J. Neuroinflammation, 13, 1-14. DOI: 10.1186/s12974- 016-0494-x.
Pan, S., Gray, N. S., Gao, W., Mi, Y., Fan, Y., Wang, X., Tuntland, T., Che, J., Lefebvre, S., Chen, Y., Chu, A., Hinterding, K., Gardin, A., End, P., Heining, P., Bruns, C., Cooke, N. G. & Nuesslein-Hildesheim, B. (2013). Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. Med. Chem. Lett., 4, 333-337. DOI: 10.1021/ ml300396r.
Potì, F., Gualtieri, F., Sacchi, S., Weißen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. & Jerzy-Roch, N. (2013). KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice. Arterioscler. Thromb. Vasc. Biol., 33, 1505-1512. DOI: 10.1161/ATVBAHA.113.301347.
Quin, J., Berdyshev, E., Goya, J., Natarajan, V. & Dawson, G. (2010). Neurons and oligodendrocytes recycle sphingosine 1-phosphate to ceramide: significance for apoptosis and multiple sclerosis. J. Biol. Chem., 285, 14134–14143. DOI: 10.1074/jbc.M109.076810.
Rajagopal, S.,Rajagopal, K. J. & Lefkowitz, R. (2010). Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug. Discov., 9, 373-386.
Roberts, R. L., Barbieri, M., Pryse, K., Chua, M., Morisaki, J. & Stahl, P. (1999). Endosome fusion in living cells overexpressing GFP-rab5. J. Cell Sci., 112, 3667–3675. DOI: 10.1038/nrd3024.
Rousselle, T. V., Kuscu, C., Kuscu, C., Schlegel, K., Huang, L., Namwanje, M. D., Eason, J., Makowski, L., Maluf, D., Mas, V. & Bajwa, A. (2020). FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front. Immunol., Vol. 23. DOI: 10.3389/fimmu.2020.01278.
Saba, J. D. & Hla, T. (2004). Point-counterpoint of sphingosine 1-phosphate metabolism. Circ. Res., 94, 724-734. DOI: 10.1161/01.RES.0000122383.60368.24.
Sanna, G. M., Jiayu, L., Euijung, C. A., Min-Young, A., Melissa, S., Peterson, B., Webb, S., Lefebvre, J. C., Nathanael, G. & Hugh, R. (2004). Sphingosine 1-Phosphate (S1P) Receptor Subtypes S1P1 and S1P3, Respectively, Regulate Lymphocyte Recirculation and Heart Rate. Journal of Biological Chemistry, 279, 13839-13848. DOI: 10.1074/ jbc.M311743200.
Schwartz, S. L., Canhong, C., Olena, P., Alexey, R. & Wandinger- Ness, A. (2007). Rab GTPases at a glance. Journal of Cell Science, 120, 3905-3910. DOI: 10.1242/jcs.015909.
Scott, F. L., Clemons, B. & Brooks, J. (2016). Ozanimod [RPC1063] is a potent sphingosine-1-phosphate receptor-1 [S1P1] and receptor-5 [S1P5] agonist with autoimmune disease-modifying activity. Br. J. Pharmacol., 173, 1778- 1792. DOI: 10.1111/bph.13476.
Shimizu, H., Takahashi, M., Kaneko, T., Murakami, T., Hakamata, Y., Kudou, S., Kishi, T., Fukuchi, K., Iwanami, S., Kuriyama, K., Tokutaro, Y., Shin, E., Koshi, M., Izumi, T., Yasuo, M. & Eiji, K. (2005). KRP-203, a Novel Synthetic Immunosuppressant, Prolongs Graft Survival and Attenuates Chronic Rejection in Rat Skin and Heart Allografts. Circulation, 111, 222-229. DOI: 10.1161/01. CIR.0000152101.41037.AB.
Spiegel, S. & Milstein, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem., 277, 25851- 25854. DOI: 10.1074/jbc.R200007200.
Takuwa, Y., Okamoto, Y., Yoshioka, K. & Takuwa, N. (2008). Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim. Biophys. Acta, 1781, 483–488. DOI: 10.1016/j.bbalip.2008.04.003.
Tobin, A. B., Butcher, J. A. & Choi, K. K. (2008). Location, location, location. . . site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signaling. Trends in Pharmacological Sciences, 29, 413-420. DOI: 10.1016/j. tips.2008.05.006.
van der Sluijs, P. (1992). The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell, 70, 729–740. 10.1016/0092-8674(92)90307-x.
Van Doorn, R., Van Horssen, J., Verzijl, D., Witte, M., Ronken, E. & Van Het Hof, B. (2010). Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 58, 1465–1476. DOI: 10.1002/glia.21021.
Voet, Donald & Voet, G. J. (2006). Bioquímica. 3era edición. Buenos aires. Editorial Médica Panamericana. Páginas 681-732.
Watterson, K. R., Johnston, E., Chalmers, C., Pronin, A., Cook, S. J., Benovic, J. L. & Palmer, T.M. (2001). Dual regulation of EDG1/S1P1 Receptor Phosphorylation and Internalization by Protein Kinase C and G-protein-coupled Receptor Kinase 2. J. Biol. Chem., 277, 5767-5777. DOI: 10.1074/jbc.M110647200.
Wingerchuk, D. M. & Weinshenker, B. G. (2016). Disease modifying therapies for relapsing multiple sclerosis. BMJ., Vol. 354. DOI: 10.1136/bmj.i3518.
Xu, J., Gray, F. & Henderson, A. (2014). Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin. Pharmacol. Drug.Dev., 3. 170-178. DOI: 10.1002/cpdd.98.
Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., Zhao, J., Yuan, H., Tumaneng, K. & Li, H. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150, 780-791. DOI: 10.1016/j.cell.2012.06.037.
Zeng, J., Ren, M., Gravotta, D., De Lemos-Chiarandini, C., Lui, M., Erdjument-Bromage, H., Tempst, P., Xu, G., Shen, TH., Morimoto, T., Adesnik, M. & Sabatini, D. D. (1999). Identification of a putative effector protein for rab11 that participates in transferrin recycling. Proc. Natl. Acad. Sci., 16, 2840-2845. DOI: 10.1073/pnas.96.6.2840.
Zeng, J. S. & Wandinger-Ness, A. (2000). Rab GTPases coordinate endocitosis. Journal of Cell Science, 113, 183-192.
Zhu, G., Zhai, P., Liu, J., Terzyan, S. Li, G. & Zhang, X. (2004). Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nature Structural & Molecular Biology, 11, 975-983. DOI: 10.1038/nsmb832.