2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Bacterias y hongos endófitos de la familia Cactaceae y sus aplicaciones
Rodríguez-Mendoza CA, Hernández LR, Pérez-Armendáriz B, Juárez ZN
Idioma: Español
Referencias bibliográficas: 96
Paginas:
Archivo PDF: 334.48 Kb.
RESUMEN
Las especies de la familia Cactaceae habitan en zonas con altas temperaturas, escasez de agua y suelos con déficit
de nutrimentos. Esto es el resultado de procesos complejos como adaptaciones fisiológicas y físicas, además de la
coevolución con microorganismos endófitos que habitan en los tejidos vegetales con relevante importancia para las
plantas, por facilitar su establecimiento en estratos rocosos, ayudar a la fijación de nitrógeno atmosférico y fósforo a
través de bacterias, así como una acción antimicrobiana por parte de los hongos. Los estudios sobre bioprospección
de endófitos en las cactáceas aún son escasos, por lo que este trabajo compila la literatura científica sobre bacterias
y hongos endófitos en cactus disponible en las bases de datos
Dialnet, DOAJ, EBSCO, Google académico, iSEEK,
Redalyc, REDIB, Science Direct, SciFinder, SciELO, Springer, Web of Science y Wiley Online Library. La revisión dio
como resultado 22 trabajos publicados en un periodo de 33 años, de los que solamente el 36% analiza su bioactividad.
Se destaca el uso de los endófitos en la biotecnología, principalmente para beneficio social (fines agrícolas y médicos),
así como de conservación.
REFERENCIAS (EN ESTE ARTÍCULO)
Aguirre-Garrido, J. F., Montiel-Lugo, D., Hernández-Rodríguez, C., Torres- Cortes, G., Millán, V., Toro, N., Martínez-Abarca, F. & Ramírez-Saad, H. C. (2012). Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie Van Leeuwenhoek, 101, 891–904. https://doi.org/10.1007/ s10482-012-9705-3
Akinsemolu, A. A. (2018). The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182, 139–155. https://doi. org/10.1016/j.jclepro.2018.02.081
Ayala, M. D. C. N. A., Castillo, F. D. H., Alcalá, E. I. L., Pérez, A. S. L., Canché, C. N. A. & García, J. R. (2020). Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas, 11(3), 507-517. https:// doi.org/10.29312/remexca.v11i3.1919
Barrales-Cureño, H. J. & De la Rosa M., R. (2014). Uso de hongos endófitos en la producción del fármaco anti-cáncer Taxol. Biotecnología Vegetal, 14(1), 3-13. https://revista. ibp.co.cu/index.php/BV/article/view/23/423
Bashan, Y., Li, C. Y., Lebsky, V. K., Moreno, M. & De Bashan, L. E. (2002). Primary colonization of volcanic rocks by plants in arid Baja California, Mexico. Plant Biology, 4(3), 392-402. https://doi.org/10.1055/s-2002-32337
Begoude, B. A. D., Slippers, B., Wingfield, M. J. & Roux, J. (2011). The pathogenic potential of endophytic Botryosphaeriaceous fungi on Terminalia species in Cameroon. Forest Pathology, 41(4), 281-292. https://doi. org/10.1111/j.1439-0329.2010.00671.x
Bellenger, J. P., Darnajoux, R., Zhang, X. & Kraepiel, A. M. L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry, 149(1), 53-73. https://doi. org/10.1007/s10533-020-00666-7
Bertetti, D., Ortu, G., Gullino, M. & Garibaldi, A. (2017). Identification of Fusarium oxysporum f. sp. opuntiarumon new hosts of the Cactaceae and Euphorbiaceae families. Journal of Plant Pathology, 99(2), 347-354. http:// www.jstor.org/stable/44686779
Bettin, F., Cousseau, F., Martins, K., Boff, N. A., Zaccaria, S., da Silveira, M. M. & Dillon, A. J. P. (2019). Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. Journal of Environmental Management, 236, 581-590. https://doi.org/10.1016/j.jenvman.2019.02.011
Bezerra, J. D. P., Santos, M. G., Barbosa, R. N., Svedese, V. M., Lima, D. M., Fernandes, M. J. S., Gomes, B. S., Paiva, L. M. & Souza-Motta, C. M. (2013). Fungal endophytes from cactus Cereus jamacaru in brazilian tropical dry forest: a first study. Symbiosis, 60(2), 53-63. https://doi.org/10.1007/ s13199-013-0243-1
Bezerra, J. D. P., de Azevedo, J. L. & Souza-Motta, C. M. (2017). Why study endophytic fungal community associated with cacti species? En: de Azevedo J., Quecine M. (Eds.) Diversity and Benefits of Microorganisms from the Tropics (pp. 21-35). Cham: Springer. https://doi.org/10.1007/978- 3-319-55804-2_2
Bulla, L. M. C., Polonio, J. C., de Brito Portela-Castro, A. L., Kava, V., Azevedo, J. L. & Pamphile, J. A. (2017). Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environmental Monitoring and Assessment, 189(2), 88. https://doi. org/10.1007/s10661-017-5790-0
Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Glockner, F. O., Amann, R., Eickhorst, T. & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. DOI: 10.1038/nature11336
Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G., López-Bucio, J. & Partida-Martínez, L. P. (2019). Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant, Cell & Environment, 42(4), 1368-1380. https://doi.org/10.1111/pce.13476
Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G. & Partida-Martínez, L. P. (2021). Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environmental Microbiology, 23(4), 2215-2229. https:// doi.org/10.1111/1462-2920.15395
Cardona, M., Osorio, J. & Quintero, J. (2009). Degradación de colorantes industriales con hongos ligninolíticos. Revista Facultad de Ingeniería Universidad de Antioquía, (48), 27-37. http://www.scielo.org.co/scielo.php?script=sci_ arttext&pid=S0120-62302009000200003&lng=en&tlng=es.
Chávez-Ambriz, L. A., Hernández-Morales, A., Cabrera- Luna, J. A., Luna-Martínez, L. & Pacheco-Aguilar, J. R. (2016). Aislados de Bacillus provenientes de la rizosfera de cactus incrementan la germinación y la floración en Mammillaria spp. (Cactaceae). Revista Argentina de Microbiología, 48(4), 333-341. https://doi.org/10.1016/j. ram.2016.09.001
Challenger, A. & Soberón, J. (2008). Los ecosistemas terrestres, en Capital natural de México, Vol. I: Conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad CONABIO, México, pp. 87-108. https://bioteca.biodiversidad.gob.mx/janium/ Documentos/13309.pdf
Clay, K. (1989). Clavicipitaceous endophytes of grasses, their potential as biocontrol agents. Mycological Research, 92(1), 1-12. https://doi.org/10.1016/S0953-7562(89)80088-7
CONABIO (comp.) (2021). Catálogo de autoridades taxonómicas de especies de flora y fauna con distribución en México. Familia Cactaceae. Base de datos del Sistema Nacional de Información sobre Biodiversidad SNIBCONABIO, México.
Conn, V. M. & Franco, C. M. (2004). Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied and Environmental Microbiology, 70(3), 1787-1794. 10.1128/aem.70.3.1787-1794.2004
Cui, M. & Nobel, P. S. (1992). Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytologist, 122(4), 643-649. https://doi.org/10.1111/j.1469-8137.1992.tb00092.x
Davis, E. C. & Shaw, A. J. (2008). Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. American Journal of Botany, 95(8), 914-924. https://doi.org/10.3732/ajb.2006463
De Bashan, L. E., Hernandez, J. P. & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Applied Soil Ecology, 61, 171-189. https://doi. org/10.1016/j.apsoil.2011.09.003
De Castro, C. P., N., Dos Santos, R. C., Cunha, M., D., Rodrigues, F., J., De Souza, F., E. M., Antinarelli, L. M. R., Soares, C., E., Ribeiro, A. & Scio, E. (2012). Cytotoxic and antioxidant activity of Pereskia aculeata Miller. Pharmacology OnLine, 3, 63-69. https://pharmacologyonline.silae.it/files/ archives/2012/vol3/PhOL_2012_3_A009_015_Nicolas.pdf
Delaye, L., García-Guzmán, G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60(1), 125-135. https://doi.org/10.1007/s13225- 013-0240-y
Devi, P. A. (2019). Detection of antibiotic genes from endophytic Pseudomonas fluorescens of cotton. BIOINFOLET-A Quarterly Journal of Life Sciences, 16(3), 146- 1 5 3 . http://www.indian journals. com/ijor. aspx?target=ijor:bil&volume=16&issue=3&article=008
Dini-Andreote, F. (2020). Endophytes: the second layer of plant defense. Trends in Plant Science, 25(4), 319-322. DOI: 10.1016/j.tplants.2020.01.007
Eke, P., Kumar, A., Sahu, K. P., Wakam, L. N., Sheoran, N., Ashajyothi, M., Patel, A. & Fekam, F. B. (2019). Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological Research,228, 126302. https://doi.org/10.1016/j.micres.2019.126302
Enebe, M. C. & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied Microbiology and Biotechnology, 102(18), 7821. DOI: 10.1007/s00253- 018-9214-z
Ferrer-Cervantes, M. E., Méndez-González, M. E., Quintana- Ascencio, P. F., Dorantes, A., Dzib, G. & Durán, R. (2012). Population dynamics of the cactus Mammillaria gaumeri: an integral projection model approach. Population Ecology, 54, 321–334. https://doi.org/10.1007/s10144- 012-0308-7
Fitriani, A., Ihsan, F. & Hamdiyati, Y. (2015). Antibacteria activity of Shewanella and Pseudomonas as endophytic bacteria from the root of Ageratum conyzoides L. Asian Journal of Applied Sciences, 3(3), 415–420. https://www. ajouronline.com/index.php/AJAS/article/view/2719
Flores, J. & Jurado, E. (2003). Are nurse protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14(6), 911- 916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x
Flores-Núñez, V. M., Fonseca-García, C., Desgarennes, D., Eloe-Fadrosh, E., Woyke, T. & Partida-Martínez, L. P. (2020). Functional signatures of the epiphytic prokaryotic microbiome of agaves and cacti. Frontiers in Microbiology, 10, 3044. https://doi.org/10.3389/ fmicb.2019.03044
Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G. & Partida-Martínez, L. P. (2016). The cacti microbiome, interplay between habitat-filtering and hostspecificity. Frontiers in Microbiology, 7, 150. https://doi. org/10.3389/fmicb.2016.00150
Fonseca-García, C., Desgarennes, D., Flores-Núñez, V. M. & Partida-Martínez, L. P. (2018). “Chapter 12-The microbiome of desert CAM plants: lessons from amplicon sequencing and metagenomics,” En: Nagarajan, M. (Ed.) Metagenomics. Cambridge, MA: Academic Press, 231–254. https://doi.org/10.1016/B978-0-08-102268-9.00012-4
Godínez, H. (2017). Las plantas y los endófitos, cómo sobrevivir en las regiones áridas y semiáridas. Elementos, 105, 39-43. https://elementos.buap.mx/directus/storage/ uploads/00000000385.pdf
Goldstein, A., Lester, T. & Brown, J. (2003). Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochimica et Biophysica Acta Proteins and Proteomics, 1647, 266–271. https://doi. org/10.1016/S1570-9639(03)00067-0
He, J., Lange, J., Marinos, G., Bathia, J., Harris, D., Soluch, R., Vaibhvi, V., Dines, P., Hassani, M. A., Wagner, K., Zapien- Campos, R., Jaspers, C. & Sommer, F. (2020). Advancing our functional understanding of host–microbiota interactions: a need for new types of studies. BioEssays, 42, 1900211. https://doi.org/10.1002/bies.201900211
Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Domingues Z., T., Gouvêa T., R., Andreote, F. D. & Soares de Melo, I. (2013). Screening of brazilian cacti rhizobacteria for plant growth promotion under drought.Microbiological Research, 168(4), 183-191. https://doi.org/10.1016/j.micres.2012.12.002
Kim, J., Jho, K. H., Choi, Y. H. & Nam, S. Y. (2013). Chemopreventive effect of cactus (Opuntia humifusa) extracts, radical scavenging activity, pro-apoptosis, and anti-inflammatory effect in human colon (SW480) and breast cancer (MCF7) cells. Food & Function, 4(5), 681- 688. https://doi.org/10.1039/C3FO30287C
Kobayashi, D. Y., Reedy, R. M., Bick, J. & Oudemans, P. V. (2002). Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 68(3), 1047–1054. https://doi.org/10.1128/AEM.68.3.1047- 1054.2002
Kusari, S., Hertweck, C. & Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 19(7), 792-798. https:// doi.org/10.1016/j.chembiol.2012.06.004
Leite, L. J. V., Weber, O. M., Correia, D., Soares, M. A. & Alves, S. J. (2015). Endophytic bacteria in cacti native to a brazilian semi-arid region. Plant and Soil, 389, 25-33. https://doi.org/10.1007/s11104-014-2344-x
Li, J. H., Wang, E. T., Chen, W. F. & Chen, W. X. (2008). Genetic diversity and potential promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry, 40, 238-246. https://doi.org/10.1016/j. soilbio.2007.08.014
Li, H. Y., Wei, D. Q., Shen, M. & Zhou, Z. P. (2012). Endophytes and their role in phytoremediation. Fungal Diversity, 54(1), 11-18. https://doi.org/10.1007/s13225- 012-0165-x
Li, H., Parmar, S., Sharma, V. K. & White, J. F. (2019). Seed endophytes and their potential applications. En: Verma S., White, Jr. J. (Eds.) Seed Endophytes (pp. 35-54). Cham: Springer. https://doi.org/10.1007/978-3-030-10504-4_3
Lima, J. V. L., Weber, O. B., Correia, D., Soares, M. A. & Senabio, J. A. (2015). Endophytic bacteria in cacti native to a Brazilian semi-arid region. Plant and Soil, 389(1-2), 25-33. https://doi.org/10.1007/s11104-014-2344-x
López, B. R., Tinoco-Ojanguren, C., Bacilio, M., Mendoza, A. & Bashan, Y. (2012). Endophytic bacteria of the rockdwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environmental and Experimental Botany, 81, 26-36. https://doi.org/10.1016/j. envexpbot.2012.02.014
Maldonado-Carmona, N., Vázquez-Hernández, M., Chávez, O. J. P., Rodríguez-Luna, S. D., Rodríguez, O. J., Sanchez, S. & Ceapă, C. D. (2019). Impact of omics in the detection and validation of potential anti-infective drugs.Current Opinion in Pharmacology, 48, 1-7. https://doi.org/10.1016/j. coph.2019.02.008
Márquez, S. S., Bills, G. F., Herrero, N. & Zabalgogeazcoa, I. (2012). Non-systemic fungal endophytes of grasses. Fungal Ecology, 5(3), 289-297. https://doi.org/10.1016/j. funeco.2010.12.001
Martínez-Klimova, E., Rodríguez-Peña, K. & Sánchez, S. (2017). Endophytes as sources of antibiotics. Biochemical Pharmacology, 134, 1-17. https://doi.org/10.1016/j. bcp.2016.10.010
Mascarúa-Esparza, M. A., Villa-González, R. & Caballero- Mellado, J. (1988) Acetylene reduction and indoleacetic acid production by Azospirllum isolates from cactaceous plants. Plant Soil, 106, 91-95. https://doi.org/10.1007/ BF02371199
Miller, C. M., Miller, R. V., Garton-Kenny, D., Redgrave, B., Sears, J., Condron, M. M., Teplow, D. B. & Strobel, G. A. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84(6), 937-44. https://doi.org/10.1046/j.1365-2672.1998.00415.x
Muthezhilan, R., Vinoth, S., Gopi, K. & Jaffar Hussain, A. (2014). Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. International Journal of ChemTech Research, 6(9), 4154-4160. http:// sphinxsai.com/2014/RTBCE/2/(4154-4160)%20014.pdf
Paredes-Mendoza, M. & Espinosa-Victoria, D. (2010). Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. Terra Latinoamericana, 28(1), 61-70. http://www.scielo.org.mx/scielo.php?script=sci_ arttext&pid=S0187-57792010000100007
Pauca, A., Talavera, C., Villasante, F., Quispe, J. & Laura, M. (2018). Cactaceae del distrito de Atiquipa y del Área de Conservación Privada Lomas de Atiquipa: aspectos taxonómicos, ecológicos y de distribución. Arnaldoa,25(3), 829-856. http://www.scielo.org.pe/scielo.php?script=sci_ arttext&pid=S2413-32992018000300003
Pereg, L., de-Bashan, L. E. & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant and soil, 399(1-2), 389-414. https://doi.org/10.1007/ s11104-015-2778-9
Pereira, P., Ibáñez, F., Rosenblueth, M., Etcheverry, M. & Martínez-Romero, E. (2011). Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Notices, 2011, 1-10. https://doi.org/10.5402/2011/938546
Pereira, J., de Azevedo, J. & Souza-Motta, C. (2017). Why study endophytic fungal community associated with cacti species? En: de Azevedo, J. & Quecine, M. (Eds.), Diversity and benefits of microorganisms from the tropics (pp. 21- 35). Suiza: Springer International Publishing. https://doi. org/10.1007/978-3-319-55804-2_2
Petrini, O. (1991). Fungal endophytes of tree leaves. p. 179- 197. En: J.H.Andrews y S.S. Hirano (Eds.). Microbial ecology of leaves. Springer Verlag, New York. https://doi. org/10.1007/978-1-4612-3168-4_9
Pitiwittayakul, N. & Tanasupawat, S. (2020). Plant Growth- Promoting endophytic Bacteria and their potential benefits in Asian countries. En: Beneficial Microbes for Sustainable Agriculture and Environmental Management (pp. 81-114). Apple Academic Press.
Porras-Alfaro, A. & Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual review of phytopathology, 49, 291-315. DOI: 10.1146/annurevphyto- 080508-081831
Puente, M. E., Bashan, Y., Li, C. Y. & Lebsky, V. K. (2004 a). Microbial populations and activities in the rhizoplane of rock-weathering desert plants, I. Root colonization and weathering of igneous rocks. Plant Biology, 6, 629–642. https://doi.org/10.1055/s-2004-821100
Puente, M. E., Li, C. Y. & Bashan, Y. (2004 b). Microbial populations and activities in the rhizoplane of rock weathering desert plants, II. Growth promotion of cactus seedling. Plant Biology, 6, 643–650. https://doi. org/10.1055/s-2004-821101
Puente, M. E., Li, C. Y. & Bashan, Y. (2009). Rockdegrading endophytic bacteria in cacti. Environmental and Experimental Botany, 66, 389–401. https://doi. org/10.1016/j.envexpbot.2009.04.010
Puri, A., Padda, K. P. & Chanway, C. P. (2017). Plant growth promotion by endophytic bacteria in nonnative crop hosts. En: Maheshwari, D. & Annapurna K. (eds.) Endophytes: crop productivity and protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi. org/10.1007/978-3-319-66544-3_2
Ramos-Garza, J., Rodríguez-Tovar, A. V., Flores-Cotera, L. B., Rivera-Orduña, F. N., Vásquez-Murrieta, M. S., Ponce- Mendoza, A. & Wang, E. T. (2016). Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico. Annals of Microbiology, 66, 991-1002. https://doi.org/10.1007/s13213-015-1184-0
Ratnaweera, P. B., de Silva, E. D., Williams, D. E. & Andersen, R. J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary and Alternative Medicine, 15, 220. https://doi.org/10.1186/ s12906-015-0722-4
Restrepo-Correa, S. P., Pineda-Meneses, E. C. & Ríos- Osorio, L. A. (2017). Mecanismos de acción de hongos y bacterias empleados como biofertilizantes en suelos agrícolas: una revisión sistemática. Ciencia y Tecnología Agropecuaria, 18(2), 335-351. https://doi.org/10.21930/ rcta.vol18_num2_art:635
Ríos-León, K., Fuertes-Ruiton, C., Arroyo, J. & Ruiz, J. (2017). Efecto quimioprotector del extracto alcaloideo de Melocactus bellavistensis (cactus globoso) sobre el cáncer de colon inducido con 1,2-dimetilhidrazina en ratas. Revista Peruana de Medicina Experimental y Salud Pública, 34 (1), 70-75. https://doi.org/10.17843/rpmesp.2017.341.2768
Rodríguez-Ruíz, E. R., Poot-Poot, W. A., Rangel-Lucio, J. A., Vaquera-Huerta, H., González-Gaona, O. J. & Treviño- Carreón, J. (2018). Germinación in vitro de biznaga cabuchera. Revista Mexicana de Ciencias Agrícolas, 9(3), 691-699. http://www.scielo.org.mx/pdf/remexca/ v9n3/2007-0934-remexca-9-03-691.pdf
Rosenblueth, M. & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. American Phytopathological Society,19, 827- 837. https://doi. org/10.1094/MPMI-19-0827
Ruvalcaba-Ruiz, D., Rojas-Bravo, D. & Valencia-Botín, A. J. (2010). Propagación in vitro de Coryphantha retusa (Britton & Rose) un cactus endémico y amenazado. Tropical and Subtropical Agroecosystems, 12(1), 139-143. https://www. redalyc.org/articulo.oa?id=93913074015
Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. J. (1998). Fungal endophytes: a continuum of interactions with host plants. Annual review of Ecology and Systematics, 29(1), 319-343. https://doi.org/10.1146/annurev.ecolsys.29.1.319
Salazar, J. R., Martínez-Vazquez, M., Cespedes, C. L., Ramírez- Apan, T., Nieto-Camacho, A., Rodríguez-Silverio, J. & Flores-Murrieta, F. (2011). Anti-inflammatory and cytotoxic activities of chichipegenin, peniocerol, and macdougallin isolated from Myrtillocactusgeometrizans (Mart. Ex Pfeiff.) Con. Zeitschrift fur Naturforschung – Section C Journal of biosciences, 66(1-2), 24-30. DOI: 10.1515/znc-2011-1-204
Samad, A., Antonielli, L., Sessitsch, A., Compant, S. & Trognitz, F. (2017). Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Scientific Reports. 7, 17336. https://doi.org/10.1038/s41598-017-16495-y
Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., Sandoval- Espinosa, Y. K. M., Ulloa-Benítez, A., Armendáriz-Guillén, B., García-Méndez, M. C. & Macías-Rubalcava, M. L. (2013). Hongos endófitos, fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP Revista Especializada en Ciencias Químico- Biológicas, 16(2), 132-146. https://doi.org/10.1016/S1405- 888X(13)72084-9
Schouten, A. (Ed.) (2019). Endophyte biotechnology: potential for agriculture and pharmacology. CABI, UK. https://doi. org/10.1079/9781786399427.0000
Schulz, B., Römmert, A. K., Dammann, U., Aust, H. J. & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism? Mycological Research, 103(10), 1275-1283. https://doi.org/10.1017/S0953756299008540
Schulz, B. & Boyle, C. (2006). What are endophytes? En: Schulz, B. J. E., Boyle, C. J. C., Sieber, T. N. (Eds.). Microbial Root Endophytes. Soil Biology, vol. 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_1
Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H. & Martinez-Romero, E. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21, 323-378. https://doi.org/10.1080/0735-260291044278
Shahid, I., Rizwan, M., Baig, D. N., Saleem, R. S., Malik, K. A. & Mehnaz, S. (2017). Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. Journal of microbiology and biotechnology, 27(3), 480-491. https://doi.org/10.4014/ jmb.1601.01021
Shedbalkar, U., Adki, V., Jadhav, J. & Bapat, V. (2010). Opuntia and other cacti, applications and biotechnological insights. Tropical Plant Biology, 3, 136-150. https://doi.org/10.1007/ s12042-010-9055-0
Silva-Hughes, A. F., Wedge, D. E., Cantrell, C. L., Carvalho, C. R., Pan, Z., Moraes, R. M., Madoxx, V. L. & Rosa, L. H. (2015). Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiological Research, 175, 67-77. https://doi. org/10.1016/j.micres.2015.03.007
Singh, R. K., Shrivastava, A., Yadav, A. & Srivastava, A. K. (2020). Endophytic bacteria as a source of bioactive compounds. En: Microbial Endophytes (pp. 175-188). Woodhead Publishing. https://doi.org/10.1016/B978-0- 12-818734-0.00008-5
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S. & Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/ plants9081011
Suryanarayanan, T. S., Wittlinger, S. K. & Faeth, S. H. (2005). Endophytic fungi associated with cacti in Arizona. Mycological Research, 109, 635–639. https://doi. org/10.1017/S0953756205002753
Suryanarayanan, T. S. (2013). Endophyte research: going beyond isolation and metabolite documentation. Fungal ecology, 6(6), 561-568. https://doi.org/10.1016/j. funeco.2013.09.007
Swarnalakshmi, K., Senthilkumar, M. & Ramakrishnan, B. (2016). Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. En: Subramaniam G., Arumugam S., Rajendran V. (eds.) Plant growth promoting actinobacteria. Springer, Singapore. https://doi. org/10.1007/978-981-10-0707-1_8
Tochhawng, L., Mishra, V. K., Passari, A. K. & Singh, B. P. (2019). Endophytic fungi: role in dye decolorization. En: Singh, B. (Ed.) Advances in endophytic fungal research: present status and future challenges. Springer, Cham. 1. https://doi.org/10.1007/978-3-030-03589-1_1
Wan, J. H. C. & Wong, M. H. (2004). Effects of earthworm activity and P–solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science 167, 209–213. https://doi.org/10.1002/jpln.200321252
Wang, E. T., Tan, Z. Y., Guo, X. W., Duran, R., Boll, G. & Martínez-Romero, E. (2006). Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Archives of Microbiology, 186, 251-259. https:// doi.org/10.1007/s00203-006-0141-5
Yadav, A. N. (2021). Beneficial plant-microbe interactions for agricultural sustainability. Journal of Applied Biology & Biotechnology, 9, 1-4. DOI: 10.7324/JABB.2021.91ed
Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C. & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied microbiology and biotechnology, 103(8), 3327-3340. https://doi.org/10.1007/s00253-019-09713-2
Zareisedehizadeh, S., Tan, C. H. & Koh, H. L. (2014). A review of botanical characteristics, traditional usage, chemical components, pharmacological activities, and safety of Pereskia bleo (Kunth) DC. Evidence-Based Complementary and Alternative Medicine, 2014, 1-11. https://doi.org/10.1155/2014/326107