2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Actividad antimicrobiana, contenido de compuestos fenólicos y capacidad antioxidante de cuatro hongos macromicetos comestibles de Chihuahua, México
Martínez-Escobedo NA, Vázquez-González FJ, Valero-Galván J, Álvarez-Parrilla E, Garza-Ocañas F, Najera-Medellin JA, Quiñónez-Martínez M
Idioma: Ingles.
Referencias bibliográficas: 54
Paginas:
Archivo PDF: 313.28 Kb.
RESUMEN
En el presente estudio se determinó el contenido de compuestos fenólicos y la actividad antimicrobiana y antioxidante en
cuatro especies de hongos comestibles (
Amanita rubescens, Astraeus hygrometricus, Laccaria laccata y
Lycoperdon perlatum).
Las actividades antimicrobianas se probaron en
Staphylococcus aureus, Streptococcus agalactiae y
Candida albicans. Los
compuestos fenólicos y la actividad antioxidante se midieron mediante métodos espectrofotométricos. Todos los hongos presentan
una alta actividad en comparación con
S. agalactiae. El contenido de compuestos fenólicos se ubicó entre 1.54 - 20.93 mg
GAE/gDW y la actividad antioxidante entre 0.0034 - 0.0854 mmol TE / g DW, siendo
A. rubescens la especie con el valor más
alto encontrado. Los resultados obtenidos de la actividad antimicrobiana utilizando el método de difusión en disco indicaron
que los extractos exhibieron una actividad moderada. Sin embargo, la Concentración Mínima Inhibitoria (CMI) con ambos
disolventes muestra que todas las especies de macromicetos registraron inhibición de los microorganismos en diferentes
concentraciones. En general, los extractos etanólicos ejercieron una actividad antimicrobiana mayor a los obtenidos con
metanol. La bacteria
S. agalactiae fue el microorganismo más susceptible y
S. aureus la más resistente. La mejor actividad
antimicrobiana se encontró en los extractos etanólicos de
A. hygrometricus y
L. perlatum, principalmente en
S. agalactiae,
con un valor de CMI de 3.75 mg/mL. En conclusión, se sugiere que estas especies de macromicetos se pueden utilizar como
fuente natural de componentes antimicrobianos y antioxidantes.
REFERENCIAS (EN ESTE ARTÍCULO)
Acharya, K., Khatua, S. & Ray, S. (2017). Quality assessment and antioxidant study of Pleurotus djamor (Rumph. ex Fr.) Boedijn. Journal of Applied Pharmaceutical Science, 7(6), 105–110. https://doi.org/10.7324/JAPS.2017.70614
Adhikari, P., Pandey, A., Agnihotri, V. & Pande, V. (2018). Selection of solvent and extraction method for determination of antimicrobial potential of Taxus wallichiana Zucc . Research in Pharmacy, 8, 1–9.
Akpi, U., Odoh, C., Ideh, E. & Adobu, U. (2017). Antimicrobial Activity of Lycoperdon perlatum Whole Fruit Body on Common Pathogenic Bacteria and Fungi. Journal of Clinical and Experimental Microbiology, 18(2), 79–85. https://dx.doi.org/10.4314/ajcem.v18i2.4
Alispahić, A., Šapčanin, A., Salihović, M., Ramić, E., Dedić, A. & Pazalja, M. (2015). Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 44, 5-8.
Alothman, M., Bhat, R. & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115(3), 785–788. https://doi.org/10.1016/j. foodchem.2008.12.005
Álvarez-Parrilla, E., de La Rosa, L. A., Martínez, N. R. & González Aguilar, G. A. (2007). Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Ciencia y Tecnologia Alimentaria, 5(5), 329–334. https://doi.org/10.1080/11358120709487708
Álvarez-Parrilla, E., de la Rosa, L., Amarowicz, R. & Shahidi, F. (2011). Antioxidant Activity of Fresh and Processed Jalapen Serrano Peppers. Journal of Agricultural and Food Chemistry, 59, 163–173. https://doi.org/10.1021/jf103434u
Álvarez-Parrilla, E., Mercado-Mercado, G., de la Rosa, L. A., López.Díaz, J.. A., Wall-Medrano, A. & González-Aguilar, G. (2014), Antioxidant activity and prevention of pork meat lipid oxidation using traditional Mexican condiments (pasilla dry pepper, achiote, and mole sauce). Food Science and Technology Campinas, 34(2), 371-378. http://dx.doi. org/10.1590/fst.2014.0052
Alves, M. J., Ferreira, I. C. F. R., Dias, J., Teixeira, V., Martins, A. & Pintado, M. (2013). A Review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Current Topics in Medicinal Chemistry, 13(21), 2648-2659. https://doi.org/10.2174/1568026611 3136660191
Barros, L., Baptista, P., Estevinho, L. M. & Ferreira, I. C. F. R. (2007). Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. Journal of Agricultural and Food Chemistry, 55(21), 8766–8771. https://doi.org/10.1021/jf071435
Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M. & Ferreira, I. C. F. R. (2008). Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. Journal of Agricultural and Food Chemistry, 56(10), 3856–3862. https://doi.org/10.1021/ jf8003114
Canli, K., Akata, I. & Altuner, E. M. (2016). In VitroAntimicrobial Activity Screening of Xylaria hypoxylon. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 42–46. https://doi.org/10.21010/ajtcam.v13i4.7
Chelela, B. L., Chacha, M. & Matemu, A. (2014). Antibacterial and antifungal activities of selected wild mushrooms from Southern Highlands of Tanzania. American Journal of Research Communication, 2(9), 58–68.
Dai, J. & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/ molecules15107313
Do, Q. D., Angkawijaya, E., Tran-Nguyen, P., Huynh, L., Soetaredjo, F., Ismadji, S. & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content , total flavonoid content , and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22, 296–302. https:// doi.org/10.1016/j.jfda.2013.11.001
Doǧan, H. H., Duman, R., Özkalp, B. & Aydin, S. (2013). Antimicrobial activities of some mushrooms in Turkey. Pharmaceutical Biology, 51(6), 707–711. https://doi.org /10.3109/13880209.2013.764327
Dulger, B. (2005). Antimicrobial activity of ten Lycoperdaceae. Fitoterapia, 76(3–4), 352–354. https://doi.org/10.1016/j. fitote.2005.02.004
Elmastas, M., Isildak, O., Turkekul, I. & Temur, N. (2007). Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis, 20(3–4), 337–345. https://doi. org/10.1016/j.jfca.2006.07.003
Ferreira, I., Barros, L. & Abreu, R. (2009). Antioxidants in Wild Mushrooms. Current Medicinal Chemistry, 16(12), 1543–1560. https://doi.org/10.2174/092986709787909587
Giri, S., Biswas, G., Pradhan, P., Mandal, S. C. & Acharya, K. (2012). Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. International Journal of PharmTech Research, 4(4), 1554–1560.
Gómez-Flores, L. D. J., Martínez-Ruiz, N. D. R., Enríquez- Anchondo, I. D., Garza-Ocañas, F., Nájera-Medellín, J. A. & Quiñónez-Martínez, M. (2019). Análisis proximal y de composición mineral de cuatro especies de hongos ectomicorrízicos silvestres de la Sierra Tarahumara de Chihuahua. TIP Revista Especializada En Ciencias Químico-Biológicas, Vol. 22, 1–10. https://doi. org/10.22201/fesz.23958723e.2019.0.184
González Barranco, P., Garza Ocañas, L., Salinas Carmona, M., Vera Cabrera, L., Garza Ocañas, F., Ramírez Gómez, X. & Torres Alanis, O. (2009). Actividad antioxidadnte, antimicrobiana y citotoxicidad de dos espcies mexicanas de Suillus spp. CIENCIA UANL, XII(1), 62–70.
Hay, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Dellavalle, R. P., Margolis, D. J., Marks, R., Naldi, L., Weinstock, M. A., Wulf, S. K., Michaud, C., Murray, C. & Naghavi, M. (2014). The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. Journal of Investigative Dermatology, 134(6), 1527–1534. https://doi.org/10.1038/jid.2013.446
Heleno, S. A., Barros, L., Sousa, M. J., Martins, A. & Ferreira, I. C. F. R. (2010). Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119(4), 1443–1450. https://doi.org/10.1016/j. foodchem.2009.09.025
Hleba, L., Kompas, M., Hutková, J., Rajtar, M., Petrová, J., Čuboň, J., Kántor, A. & Kačániová, M. (2016). Antimicrobial activity of crude ethanolic extracts from some medicinal mushrooms. Journal of Microbiology, Biotechnology and Food Sciences, 05(Speciall), 60-63. https://doi.org/10.15414/jmbfs.2016.5.speciall.60-63
Iwalokun, B. A., Usen, U. A., Otunba, A. A. & Olukoya, K. (2007). Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. African Journal of Biotechnology, 6(15), 1732–1739. https://doi. org/10.5897/ajb2007.000-2254
Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218.
Kalyoncu, F., Oskay, M., Sağlam, H., Erdoğan, T. F. & Tamer, A. Ü. (2010). Antimicrobial and Antioxidant Activities of Mycelia of 10 Wild Mushroom Species. Journal of Medicinal Food, 13(2), 415–419.
Kaewnarin, K., Suwannarach, N., Kumla, J. & Lumyong, S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 27, 352–364. https://doi. org/10.1016/j.jff.2016.09.008
Keleş, A., Koca, İ. & Gençcelep, H. (2011). Antioxidant Properties of Wild Edible Mushrooms. Journal of Food Processing & Technology, 2(6), 1-6. https://doi. org/10.4172/2157-7110.1000130
Kosanić, M., Ranković, B., Rančić, A. & Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477–484. https:// doi.org/10.1016/j.jfda.2016.01.008
Lai, T., Biswas, G., Chatterjee, S., Dutta, A., Pal, C., Banerji, J., Bhuvanesh, N., Reibenspies, J. & Acharya, K. (2012). Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chemistry and Biodiversity, 9(April), 1517–1524.
Leyva, J. M., Pérez-Carlón, J. J., González-aguilar, G. A., Esqueda, M. & Ayala-zavala, J. F. (2013). Funcionalidad antibacteriana y antioxidante de extractos hidroalcohólicos de Phellinus merrillii. Revista Mexicana de Micología, 37, 11–17. Retrieved from http://revistamexicanademicologia. org/wp-content/uploads/2013/06/RMM-Tr-273-versionpaginada- 11-17.pdf
Li, C., & Oberlies, N. H. (2005). The most widely recognized mushroom: Chemistry of the genus Amanita. Life Sciences, 78, 532–538. https://doi.org/10.1016/j.lfs.2005.09.003
Liu, J., Jia, L., Kan, J. & Jin, C. (2013). In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and Chemical Toxicology, 51(1), 310–316. https://doi.org/10.1016/j. fct.2012.10.014
Lund, R. G., Del Pino, F. A. B., Serpa, R., do Nascimento, J. S., Da Silva, V. M. I., Ribeiro, G. A. & Rosalen, P. L. (2009). Antimicrobial activity of ethanol extracts of Agaricus brasiliensis against mutans streptococci. Pharmaceutical Biology, 47(9), 910–915. https://doi. org/10.1080/13880200902950801
Mujić, I., Zeković, Z., Lepojević, Ž., Vidović, S. & Živković, J. (2010). Antioxidant properties of selected edible mushroom species. Journal of Central European Agriculture, 11(4), 387-391.
Naczk, M. & Shahidi, F. (2006). Phenolics in cereals , fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002
Nieto, I. J. & Cucaita, E. del P. (2007). Ácidos grasos, ésteres y esteroles del cuerpo fructífero del hongo Laccaria laccata. Revista Colombiana de Química, 36(3), 277–284. Retrieved from http://revistas.unal.edu.co/index.php/rcolquim/article/ view/1290
Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. & Malm, A. (2015). Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS ONE, 10(10), 1–13. https://doi.org/10.1371/journal. pone.0140355
Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. & Malm, A. (2014). Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Science and Technology, 59(2P1), 689–694. https://doi.org/10.1016/j. lwt.2014.05.041
Özyürek, M., Bener, M., Güçlü, K. & Apak, R. (2014). Antioxidant/antiradical properties of microwaveassisted extracts of three wild edible mushrooms. Food Chemistry, 157, 323–331. https://doi.org/10.1016/j. foodchem.2014.02.053
Padilla, M. A. (2012). Inhibición in vitro del Enterococcus faecalis con hidróxido de calcio, clorexidina y ozono. Universidad Autónoma de Ciudad Juárez, Tesis de Maestría, 129.
Pavithra, M., Sridhar, K. R., Greeshma, A. A. & Tomita- Yokotani, K. (2016). Bioactive potential of the wild mushroom Astraeus hygrometricus in South-west India. Mycology, 7(4), 191–202. https://doi.org/10.1080/21501 203.2016.1260663
Prasad, R., Varshney V. K., Harsh, N. S. K. & Kumar, M. (2015). Antioxidant Capacity and Total Phenolics Content of the Fruiting Bodies and Submerged Cultured Mycelia of Sixteen Higher Basidiomycetes Mushrooms from India. International Journal of Medicinal Mushrooms, 17(10), 933–941.
Quiñónez-Martínez, M., Ruan-Soto, F., Aguilar-Moreno, E., Garza-Ocañas, F., Lebgue-Keleng, T., Lavín-Murcio, A. & Enríquez-Anchondo, I. (2014). Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. Journal of ethnobiology and ethnomedicine, 10(67), 1-13. DOI: 10. 67. 10.1186/1746-4269-10-67.
Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W. & Buchanan, P. K. (2014). Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioactive Carbohydrates and Dietary Fibre, 3(2), 41–51. https://doi.org/10.1016/j.bcdf.2014.01.003
Riain, N. U. (2013). Recommended management of common bacterial skin infections. Prescriber, 22(15–16), 15–25.
Ruiz, M. J., Pérez-Moreno, J., Almaraz-Suárez, J. J. & Torres- Aquino, M. (2013). Hongos silvestres con potencial nutricional, medicinal y biotecnológico comercializados en Valles Centrales, Oaxaca. Revista Mexicana de Ciencias Agrícolas, 4(4), 199–213.
Smolskaite, L., Venskutonis, P. R. & Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Science and Technology, 60(1), 462–471. https://doi. org/10.1016/j.lwt.2014.08.007
Srikram, A. & Supapvanich, S. (2016). Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources, 50(6), 432–436. https://doi. org/10.1016/j.anres.2016.08.001
Torres, C. & Cercenado, E. (2010). Lectura interpretada del antibiograma de cocos gram positivos. Enfermedades Infecciosas y Microbiologia Clínica, 28(8), 541–553. https://doi.org/10.1016/j.eimc.2010.02.003
Wright, G. D. (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5), 589–594. https://doi.org/10.1016/j.mib.2010.08.005
Yahia, E. M., Gutiérrez-Orozco, F. & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14–22. https://doi.org/10.1016/j. foodchem.2017.01.044