2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Aplicación de compuestos GRAS para el control de la pudrición blanda en frutos de Jaca (Artocarpus heterophyllus L.) causado por Rhizopus stolonifer
Coronado-Partida LD, Serrano M, Romanazzi G, González-Estrada RR, Gutiérrez-Martínez P
Idioma: Ingles.
Referencias bibliográficas: 30
Paginas:
Archivo PDF: 250.96 Kb.
RESUMEN
El fruto de yaca es afectado por diversos patógenos en la etapa de postcosecha entre los que se encuentra el hongo
Rhizopus stolonifer agente causal de la pudrición blanda. Para el control de este patógeno se utilizan fungicidas que
dañan el medio ambiente y afectan la salud humana. Esta situación lleva a buscar alternativas seguras entre las que
se encuentra el quitosano, con características fungicidas y control de la maduración en diversos frutos. Asimismo, el
sorbato de potasio es un compuesto que se ha utilizado tradicionalmente para conservar alimentos. En este estudio
se aplicó quitosano (Chi, por sus siglas en inglés) y sorbato de potasio (PS, por sus siglas en inglés) para inhibir el
desarrollo de
R. stolonifer. Se determinó el crecimiento micelial, germinación de esporas, esporulación, severidad de la
enfermedad, así como la actividad de las enzimas involucradas en la defensa del fruto como la peroxidasa (POD) y la
polifenoloxidasa (PPO). El resultado es una reducción al 100% del crecimiento micelial y la germinación de esporas con
la combinación 1% Chi-1.0% PS, tampoco se manifestó una pudrición blanda cuando se aplicó el mismo tratamiento en
la yaca, con la inducción en la actividad de POD y PPO. La aplicación de quitosano combinado con sorbato de potasio
puede ser una alternativa prometedora contra la pudrición blanda en frutos de yaca.
REFERENCIAS (EN ESTE ARTÍCULO)
Ayala-Valencia, G. (2015). Efecto antimicrobiano del quitosano: una revisión de la literatura. Scientia Agroalimentaria, 2, 6–12.
Bautista-Baños, S., Bosquez-Molina, E. & Barrera-Necha, L. (2014). Rhizopus stolonifer (Soft Rot). pp. 1-144. In: Postharvest Decay-Control Strategies, Bautista-Baños (ed.). Academic Press. San Diego, USA. https://doi.org/10.1016/ B978-0-12-411552-1.00001-6
Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest-a review. Revista Chapingo Serie Horticultura, 23(2), 103–121.
Benhamou, N. (1996). Elicitor-induced plant defence pathways. Trends in Plant Science, 1(7), 233–240. https://doi. org/10.1016/1360-1385(96)86901-9
Berúmen-Varela, G., Coronado-Partida, L., Ochoa-Jiménez, A., Chacón-López, M. & Gutiérrez-Martínez, P. (2015). Effect of chitosan on the induction of disease resistance against Colletotrichum sp in mango (Mangifera indica L.) cv Tommy Atkins. Revista Investigación y Ciencia, 23(66),16–21.
Blechert, S., Brodschelm, W., Hölder, S., Kammerer, L., Kutchan, T. M., Mueller, M. J. & Zenk, M. H. (1995). The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4099–4105. https://doi.org/10.1073/ pnas.92.10.4099
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. https://doi.org/10.1016/0003- 2697(76)90527-3
Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2(C), 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8
Chen, C., Bélanger, R. R., Benhamou, N. & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56(1), 13–23. https://doi.org/10.1006/ pmpp.1999.0243
Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W. & Wan, N. (2014). Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56, 31–36. https://doi.org/10.1016/j.cropro.2013.10.007
Cortes-Rivera, H. J., Blancas-Benítez, F. J., Romero-Islas, L. d. C., Gutiérrez-Martínez, P. & González-Estrada, R. R. (2019). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts, against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31,613- 617. https://doi.org/https://doi.org/10.9755/ejfa.2019.v31. i8.1993
García-Garrido, J. M. & Ocampo, J. A. (2002). Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 53(373), 1377–1386. https://doi.org/10.1093/jxb/53.373.1377
González-Estrada, R. R., Vega-Arreguín, J., Robles-Villanueva, B. A., Velázquez-Estrada, R. M., Ramos-Guerrero, A. & Gutiérrez-Martínez, P. (2020). Evaluación in vitro de productos químicos no convencionales para el control de Penicillium citrinum. Polibotánica, 49, 161–172. https:// doi.org/10.18387/polibotanica.49.11
Gutiérrez-Martínez, P., Ramos-Guerrero, A., Rodríguez-Pereida, C., Coronado-Partida, L., Angulo-Parra, J. & González- Estrada, R. R. (2018). Chitosan for Postharvest Disinfection of Fruits and Vegetables. pp. 231–241. In: Postharvest Disinfection of Fruits and Vegetables. Siddiqui (ed.). Academic Press, San Diego, USA. https://doi.org/https:// doi.org/10.1016/B978-0-12-812698-1.00012-1
Jukanti, A. (2017). Physicochemical properties of polyphenol oxidases, pp. 33–56. In Polyphenol oxidases (PPOs) in plants. Jukanti A. (ed). Springer Singapore, Singapore. https://doi.org/10.1007/978-981-10-5747-2
Kazan, K., Murray, F. R., Goulter, K. C., Llewellyn D. J. & Manners, J. M. (1998). Induction of cell death in transgenic plants expressing a fungal glucose oxidase. Molecular Plant-Microbe Interactions, 11(6), 555–562. https://doi. org/10.1094/MPMI.1998.11.6.555
Liu, J., Tian, S., Meng, X. & Xu. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300–306. https://doi.org/10.1016/j. postharvbio.2006.12.019
Montesinos-Herrero, C., Moscoso-Ramírez, P. A. & Palou, L. (2016). Evaluation of sodium benzoate and other food additives for the control of citrus postharvest green and blue molds. Postharvest Biology and Technology, 115, 72–80. https://doi.org/10.1016/j.postharvbio.2015.12.022
Palou, L., Ali, A., Fallik, E. & Romanazzi, G. (2016). Postharvest Biology and Technology GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology andTechnology, 122, 41–52. https://doi.org/10.1016/j.postharvbio.2016.04.017
Peng, M. & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82(6), 696-699. https:// doi.org/10.1094/phyto-82-696
Ramos-Guerrero, A., González-Estrada, R. R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado- Hernández, M. E. & Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonife isolated from soursop fruits: in vitro tests. Food Science Biotechnology, 27, 755–763.
SIAP. (2019). Anuario Estadístico de la Producción Agrícola. México. https://nube.siap.gob.mx/cierreagricola / Accessed Ag. 10, 2020.
Singh, D. & Sharma, R. R. (2018). Postharvest Diseases of Fruits and Vegetables and Their Management. pp. 1-52. In: Postharvest Disinfection of Fruits and Vegetables. Siddiqui (ed.). Academic Press, San Diego, USA. https:// doi.org/10.1016/b978-0-12-812698-1.00001-7
Smilanick, J. L., Mansour, M. F., Gabler, F. M. & Sorenson, D. (2008). Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biology and Technology, 47(2), 226–238. https://doi.org/10.1016/j. postharvbio.2007.06.020
Soliva, R. C., Elez, P., Sebastián, M. & Martín, O. (2000). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies, 1(4), 261–268. https://doi. org/10.1016/S1466-8564(00)00033-3
Sommer, K. A., Petersen, G. & Bautz, E. K. F. (1994). The gene upstream of DmRP128 codes for a novel GTP-binding protein of Drosophila melanogaster. Molecular Genetics and Genomics, 242(4), 391–398. https://doi.org/10.1007/ BF00281788
Velázquez-del Valle, M. G., Bautista-Baños, S., Hernández- Lauzardo, A. N., Guerra-Sánchez, M. G. & Amora-Lazcano, E. (2008). Estrategias de Control de Rhizopus stolonifer Ehrenberg (Ex Fr.) Lind, Agente Causal de Pudriciones Postcosecha en Productos Agrícolas. Revista Mexicana de Fitopatología, 26(1), 49-55.
Weir, T. L., Park, S. W. & Vivanco, J. M. (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 7(4), 472–479. https:// doi.org/10.1016/j.pbi.2004.05.007
Yin, L., Zou, Y., Ke, X., Liang, D., Du, X., Zhao, Y. & Ma, F. (2013). Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 164, 17-23. https://doi.org/10.1016/j. scienta.2013.08.037
Yue-Ming, J. (1999). Purification and some properties of polyphenol oxidase of longan fruit. Food Chemistry, 66(1), 75–79.