2006, Number 4
<< Back Next >>
Arch Cardiol Mex 2006; 76 (4)
Discordant pattern, visual identification of myocardial viability with PET
Alexánderson E, Ricalde A, Zerón J, Talayero JA, Cruz P, Adame G, Mendoza G, Meave A
Language: Spanish
References: 49
Page: 347-354
PDF size: 216.61 Kb.
ABSTRACT
PET (positron emission tomography) as a non-invasive imaging method for studying cardiac perfusion and metabolism has turned into the gold standard for detecting myocardial viability. The utilization of 18 FDG as a tracer for its identification permits to spot the use of exogenous glucose by the myocardium segments. By studying and comparing viability and perfusion results, for which the latter uses tracers such as
13N-ammonia, three different patterns for myocardial viability evaluation arise: transmural concordant pattern, non-transmural concordant pattern, and the discordant pattern; the last one exemplifies the hibernating myocardium and proves the presence of myocardial viability. The importance of its detection is fundamental for the study of an ischemic patient, since it permits the establishment of and exact diagnosis, prognosis, and the best treatment option. It also allows foreseeing functional recovery of the affected region as well as the ejection fraction rate after revascularization treatment if this is determined as necessary. All these elements regarding viability are determinant in order to reduce adverse events and help improving patients’ prognosis.
REFERENCES
Rahimtoola SH: The hibernating myocardium. Am Heart J 1989; 117: 211-21.
Wijns W, Vatner S, Camici P: Hibernating Myocardium. N Engl J Med 1998; 339(3): 173-81.
Jimenez Borreguero LJ, Ruiz-Salmeron R: Assessment of Myocardial Viability in Patients Before Revascularization. Rev Esp Cardiol 2003; 56(7): 721-33.
Redwood SR, Ferrari R, Marber MS: Myocardial hibernation and stunning: From physiological principles to clinical practice. Heart 1998; 80: 218-22.
Vanovershcelde LJ, Wijns W, Depre C, Essamri B, Heyndrickx G, Borges M, et al: Mechanisms of chronic regional postischemic dysfunction in humans: new insights from the study of noninfarcted collateral dependent myocardium. Circulation 1993; 87: 1513-23.
Alexánderson E, Kerik N, Unzek S, Fermon S: Principios y aplicaciones de la tomografía por emisión de positrones (PET) en la cardiología. PET en México: una realidad. Arch Cardiol Mex 2002; 72: 157-64.
Dutka DP, Camici PG: The contribution of positron emission tomography to the study of ischemic heart failure. Prog Cardiovasc Dis 2001; 43(5): 399-418.
Schelbert HR: Metabolic imaging to assess myocardial viability. J Nucl Med 1994; 35: 8S.
Fitzgerald J, Parker A, Danias P: F-18 fluoro deoxyglucose SPECT for assessment of myocardial viability. J Nucl Cardiol 2000; 7(4): 382-7.
Stillman AE, Wilke N, Jerosch-Herold M: Myocardial Viability. Radiol. Clin North Am 1999; 37(2): 361-78.
Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Comel JH, Visser CA: Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med. 1997; 24(1): 35-41.
Knuuti, MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al: Euglycemic Hyperinsulinemic Clamp and Oral Glucose Load in Stimulating Myocardial Glucose Utilization During Positron Emission Tomography. J Nucl Med, 1992; 33(7): 1255-1262.
Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, Teras M, et al: Enhancement of Myocardial [Fluorine-18]Fluorodeoxyglucose Uptake By a Nicotinic Acid Derivative. J Nucl Med 1994; 35(6): 989-998.
Van Lingen A, Huijgens PC, Visser FC, Ossenkoppele GJ, Hoekstra OS, Martens HJ, et al: Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 1992; 19(5): 315-21.
Sandler MP, Bax JJ, Patton JA, Visser FC, Martin WH, Wijns W, et al: Fluorine-18-fluorodeoxyglucose cardiac imaging using a modified scintillation camera. J Nucl Med, 1998; 39(12): 2035-43.
Bax JJ, Visser FC, van Lingen A, Huitink JM, Kamp O, van Leeuwen GR, et al: Feasibility of Assessing Regional Myocardial Uptake of F-18-Fluorodeoxyglucose Using Single Photon Emission Computed Tomography. Eur Heart J 1993; 14(12): 1675-1682.
Bax JJ, Visser FC, van Lingen A, Groeneveld AB, Huitink JM, Teule GJ, et al: Relation Between Myocardial Uptake of Thallium-201 Chloride and Fluorine-18 Fluorodeoxyglucose Imaged With Single-Photon Emission Tomography in Normal Individuals. Eur J Nucl Med 1995; 22(1): 56-60.
Sandler MP, Videlefsky S, Delbeke D, Patton JA, Meyerowitz C, Martin WH, et al: Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol, 1995. 26(4): 870-8.
Martin WH, Delbeke D, Patton JA, Hendrix B, Weinfeld Z, Ohana I, et al: FDG-SPECT: correlation with FDG-PET. J Nucl Med 1995; 36(6): 988-95.
Stoll HP, Hellwig N, Alexander C, Ozbek C, Schieffer H, Oberhausen E: Myocardial metabolic imaging by means of fluorine-18 deoxyglucose/technetium-99m sestamibi dual-isotope single-photon emission tomography. Eur J Nucl Med. 1994; 21(10): 1085-93.
Bax JJ, Valkema R, Visser FC, van Lingen A, Cornel JH, Poldermans D, et al: FDG SPECT in the assessment of myocardial viability. Comparison with dobutamine echo. Eur Heart J 1997; 18(Suppl D): D124-9.
Delbeke D, Videlefsky S, Patton JA, Campbell MG, Martin WH, Ohana I, et al: Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med 1995; 36(11): 2110-9.
Burt RW, Perkins OW, Oppenheim BE, Schauwecker DS, Stein L, Wellman HN, et al: Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 1995; 36(2): 176-9.
Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, et al: Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996; 28(3): 558-64.
Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V: [F-18] fluorodeoxyglucose single photon emission computed tomography: Can it replace PET and thallium SPECT for the assessment of myocardial tomography? Circulation 1998; 97(9): 843-850.
Chen EQ, MacIntyre WJ, Go RT, Brunken RC, Saha GB, Wong CY, et al: Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 1997; 38(4): 582-6.
Ussell RR, Mrus JM, Mommessin JI, Taegtmeyer H: Compartmentation of hexokinase in rat heart. J Clin Invest 1992; 90: 1972-1977.
Taegtmeyer H, Mcnulty P, Young M: Adaptation and maladaptation of the heart in diabetes. Circulation 2002; 105: 1727-1733.
Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 1999; 276: E1-E18.
Saha AK, Vavvas D, Kurowski TG, Apazidis A, Witters LA, Shafrir E et al: Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Am J Physiol 1997; 272: E641-E648.
Calvani M, Reda E, Arrigoni-Martelli E: Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95: 75-83.
Alexanderson E, Gomez-Martin D, Benito I, Ruiz-Ramirez L, Ricalde A, Meave A: Tomografía por emisión de positrones (PET): Una herramienta útil para el estudio del metabolismo cardíaco. Arch Cardiol Mex 2004; 74: 220-228.
Brosius FC, Liu Y, Nguyen N, Sun D, Bartlett J, Schwaiger M. Persistent myocardial ischemia increases GLUT 1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol 1997; 29(6): 1675-85.
Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ: Low-flow ischemia leads to translocation of canine heart GLUT 4 and GLUT 1 glucose transporters to the sarcolemma in vivo. Circulation 1997; 95: 415-422.
Lopaschuk G, Stanley W. Glucose metabolism in the Ischemic Heart. Circulation 1997; 95: 313-315.
Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH: Sensitivity, specificity and predictive accuracies of various non-invasive techniques for hibernating myocardium. Curr Probl Cardiol 2001; 26(2): 141-6.
Bax JJ, Visser FC, Elhendy A, Poldermans D, Cornel JH, van Lingen A, et al: Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria. J Nucl Med 1999; 40(11): 1866-73.
Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L, et al: Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992; 19(10): 874-81.
Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314(14): 884-8.
Depre C, Vanoverschelde JL, Melin JA, Borgers M, Bol A, Ausma J, et al: Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268(3 Pt 2): H1265-75.
Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994; 73(8): 527-33.
Paolini G, Lucignani G, Zuccari M, Landoni C, Vanoli G, Di Credico G, et al: Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardiothorac Surg 1994; 8(3): 139-44.
Eitzman D, al-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, et al: Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992; 20(3): 559-65.
Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al: Relation Among Stenosis Severity, Myocardial Blood Flow, and Flow Reserve in Patients With Coronary Artery Disease. Circulation 1995; 91(7): 1944-1951.
Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al: Relationship between preoperative viability and postoperative improvement in LVEF and heart failure symptoms. J Nucl Med 2001; 42(1): 79-86.
Yoshida K, Gould KL: Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993; 22(4): 984-97.
Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, et al: Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994; 90(6): 2687-94.
Di Carli MF: Predicting improved function after myocardial revascularization. Curr Opinions Cardiol 1998; 13(6): 415-24.
Duong T, Hendi P, Fonarow G, Asgarzadie F, Stevenson L, Di Carli M, et al: Role of positron emission tomographic assesment of myocardial viability in the management of patients who are referred for cardiac transplantation. Circulation 1995; 92(8): I-123.