2020, Number 6
<< Back Next >>
Acta Ortop Mex 2020; 34 (6)
Results and complications of adjacent segment disease treated by minimally invasive lateral intersomatic arthrodesis
Luque R, Echevarría M, Alcobía B, Urda A, Domínguez I, Marco F
Language: Spanish
References: 29
Page: 388-398
PDF size: 502.77 Kb.
ABSTRACT
Introduction: A comparative clinical study has been conducted on patients involved using lateral intersomatic arthrodesis for the treatment of adjacent segment disease using titanium and PEEK intersomatic devices.
Material and methods: Clinical (EVA and oswestry disability index ODI) and radiological (alignment and fusion), complications (major and minor) and quality of life (EQ5D) of 32 patients intervened from September 2015 to September 2018 have been analyzed and compared, with an average follow-up of 25 months (46-18). The average age in surgery was 66 years (39-89) and 68% of patients were women.
Results: The most common segment involved was L3-L4 (62%) right retroperitoneal approach 86%. Lumbar EVA improved from 6.2 ± 2.12 to 4.1 ± 1.71 (p = 0.028). The LEG EVA descended from 5.3 ± 2.26 to 1.9 ± 1.58 (p = 0.02). The ODI scales improved from 50.2 ± 18.9 to 33.3 ± 10.2 (p = 0.025) and the EQ5D went from 0.52 to 0.73 (p = 0.039) with no statistically significant differences between the groups (ODI p = 0.18, EQ5D p = 0.293). Radiologically increased intervertebral height, lumbar and segmental lordosis, decreased Cobb's angle and the overall melting rate was 84.3% (88% Ti/82% PEEK), with no differences between the groups.
Conclusion: Lateral lumbar interbody fusion is an effective method for treating adjacent segment disease with clinical-radiological results and literature-like complications. No differences have been found between Ti and PEEK implants.
REFERENCES
Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012; 37: 67-76. http://dx.doi.org/10.1097/BRS.0b013e31820cccfb.
Domínguez I, Luque R, Noriega M, Rey J, Alia J, Marco-Martínez F. Extreme lateral lumbar interbody fusion. Surgical technique, outcomes and complications after a minimum of one year follow-up. Rev Esp Cir Ortop Traumatol. 2017; 61(1): 8-18. doi: 10.1016/j.recot.2016.09.001.
Lawrence BD, Wang J, Arnold PM, Hermsmeyer J, Norvell DC, Brodke DS, et al. Predicting the risk of adjacent segment pathology after lumbar fusion: a systematic review. Spine (Phila Pa 1976). 2012; 37(22 Suppl): S123-32.
Radcliff KE, Kepler CK, Jakoi A, Sidhu GS, Rihn J, Vaccaro AR, et al. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J. 2013; 13(10): 1339-49.
Xia XP, Chen HL, Cheng HB. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2013; 38(7): 597-608.
Sears WR, Sergides IG, Kazemi N, Smith M, White GJ, Osburg B Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J. 2011; 11: 11-20.
Miwa T, Sakaura H, Yamashita T, Suzuki S, Ohwada T. Surgical outcomes of additional posterior lumbar interbody fusion for adjacent segment disease after single-level posterior lumbar interbody fusion. Eur Spine J. 2013; 22(12): 2864-8.
Nachanakian A, El Helou A, Alaywan M. The interspinous spacer: a new posterior dynamic stabilization concept for prevention of adjacent segment disease. Adv Orthop. 2013; 2013: 637362.
Adogwa O, Parker SL, Shau DN, Mendenhall SK, Devin CJ, Cheng JS, et al. Cost per quality-adjusted life year gained of laminectomy and extension of instrumented fusion for adjacent-segment disease: defining the value of surgical intervention. J Neurosurg Spine. 2012; 16(2): 141-6.
Chou D, Dekutoski M, Hermsmeyer J, Norvell DC. The treatment of lumbar adjacent segment pathology after a previous lumbar surgery: a systematic review. Spine (Phila Pa 1976). 2012; 37: S180-8.
Parker SL, Shau DN, Mendenhall SK, McGirt MJ. Factors influencing 2-year health care costs in patients undergoing revision lumbar fusion procedures: clinical article. J Neurosurg Spine. 2012; 16(4): 323-8.
Smorgick Y, Baker KC, Bachison CC, Herkowitz HN, Montgomery DM, Fischgrund JS. Hidden blood loss during posterior spine fusion surgery. Spine J. 2013; 13(8): 877-81.
Parker SL, Mendenhall SK, Shau D, Adogwa O, Cheng JS, Anderson WN, et al. Determination of minimum clinically important difference in pain, disability, and quality of life after extension of fusion for adjacent-segment disease. J Neurosurg Spine. 2012; 16(1): 61-7.
Wang MY, Vasudevan R, Mindea SA. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent segment lumbar degenerative stenosis without supplemental pedicle screw fixation: clinical article. J Neurosurg Spine. 2014; 21(6): 861-6.
Kepler CK, Sharma AK, Huang RC, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion: clinical article. J Neurosurg Spine. 2012; 16(4): 329-33.
Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006; 6(4): 435-43.
Benglis DM, Elhammady MS, Levi AD, Vanni S. Minimally invasive anterolateral approaches for the treatment of back pain and adult degenerative deformity. Neurosurgery. 2008; 63: 191-6.
Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007; 15: 321-9.
Uribe JS, Myhre SL, Youssef JA. Preservation or restoration of segmental and regional spinal lordosis using minimally invasive interbody fusion techniques in degenerative lumbar conditions. Spine (Phila Pa 1976). 2016; 41(1): S50-8.
Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017; 44: 23-9. doi: 10.1016/j.jocn.2017.06.062.
Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013; 22: 1539-46. doi: 10.1007/s00586-013-2772-y.
Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014; 23 (10): 2150-5. doi. 10.1007/s00586-014-3466-9.
Chen E, Xu J, Yang S, Zhang Q, Yi H, Liang D, et al. Cage subsidence and fusion rate in extreme lateral interbody fusion with and without fixation. World Neurosurg. 2019; 122: e969-77. doi: 10.1016/j.wneu.2018.10.182.
Palejwala SK, Sheen WA, Walter CM, Dunn JH, Baaj AA. Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: review of the literature and report of three cases. Clin Neurol Neurosurg. 2014; 124: 90-6. doi: 10.1016/j.clineuro.2014.06.031.
Oliveira L, Marchi L, Coutinho E et al. The use of rh-BMP2 in stand alone lateral interbody fusion (XLIF): clinical and radiological results after 24 months follow-up. World Spinal Column J. 2010; 4: 41-6.
Jain D, Verma K, Mulvihill J, Mizutani J, Tay B, Burch S, Deviren V. Comparison of stand-alone, transpsoas lateral interbody fusion at L3-4 and cranial vs transforaminal interbody fusion at L3-4 and L4-5 for the treatment of lumbar adjacent segment disease. Int J Spine Surg. 2018; 12(4): 469-74. doi: 10.14444/5056.
Rodgers WB, Cox CS, Gerber EJ. Minimally invasive treatment of adjacent segment disease after prior lumbar fusions. Internet J Minimally Invasive Spinal Technol. 2009; 3 (4).
Malham GM, Ellis NJ, Parker RM, Seex KA. Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. Scientific World Journal. 2012; 2012: 246989.
Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, et al. Changes in sagittal alignment following short-level lumbar interbody fusion: comparison between posterior and lateral lumbar interbody fusions. Asian Spine J. 2019; 13(6): 904-12. doi: 10.31616/asj.2019.0011.
EVIDENCE LEVEL
III. Estudio retrospectivo comparativo