2020, Number 2
<< Back
Rev Mex Mastol 2020; 10 (2)
The epigenetic and anticancer properties of valproic acid
Luna-Palencia GR, Fernández-Navarrete E, Vásquez-Moctezuma i
Language: Spanish
References: 65
Page: 54-62
PDF size: 213.74 Kb.
ABSTRACT
Valproic acid is an antiepileptic drug that has been used for more than 50 years. However, a few decades ago, it was discovered that it has epigenetic effects, and this finding allowed it to be proposed as an anticancer drug. There is much accumulated clinical evidence on the use of this and its effects on humans. The epidemiological evidence that indicates its effect on cancer is the observation that the chronic use of valproic acid in a very large group of war veteran patients reduces head and neck cancer frequency. There are also multiple assays on human cell lines and animal models where a cell cycle arrest effect, induction of differentiation and death is observed. This review analyzes the application of this drug in combination with chemotherapy.
REFERENCES
Awtry EH, Loscalzo J. Aspirin. Circulation. 2000; 101 (10): 1206-1218.
Abeles AM, Pillinger MH. Statins as antiinflammatory and immunomodulatory agents: a future in rheumatologic therapy? Arthritis Rheum. 2006; 54 (2): 393-407.
Löscher W. Basic pharmacology of valproate. A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002; 16 (10): 669-694.
Frazee LA, Foraker KC. Use of intravenous valproic acid for acute migraine. Ann Pharmacother. 2008; 42 (3): 403-407.
Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci. 2007; 64 (16): 2090-2103.
Luna-Palencia GR, Correa-Basurto J, Vásquez-Moctezuma I. El ácido valproico como agente sensibilizador al tratamiento anticáncer. Gac Med Mex. 2018; 155 (4): 417-422.
Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646-674.
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150 (1): 12-27.
Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol. 2016; 26 (14): R644-R648.
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014; 15 (11): 703-708.
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 2006; 34 (9): 2653-2662.
Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014; 6 (4): a018713.
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325 (5942): 834-840.
Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011; 8 (6): 2021-2031.
Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics. 2012; 4 (1): 5.
Sanaei M, Kavoosi F., Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res. 2019; 8: 63.
De Ruijter AJM, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003; 370 (Pt 3): 737-749.
Dejligbjerg M, Grauslund M, Litman T, Collins L, Qian X, Jeffers M et al. Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Mol Cancer. 2008; 7: 70.
Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I. Targeting histone deacetylases in neuroblastoma. Curr Pharm Des. 2009; 15 (4): 436-447.
Fantin VR, Richon VM. Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications. Clin Cancer Res. 2007; 13 (24): 7237-7242.
Mercurio C, Minucci S, Pelicci PG. Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res. 2010; 62 (1): 18-34.
Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 1999; 18 (50): 7016-7025.
Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000; 97 (18): 10014-10019.
Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV et al. P21-dependent G1arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer. 2000; 83 (6): 817-825.
Ocker M, Schneider-Stock R. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1. Int J Biochem Cell Biol. 2007; 39 (7-8): 1367-1374.
Gius D, Cui H, Bradbury CM, Cook J, Smart DD, Zhao S et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 2004; 6 (4): 361-371.
Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol. 2006; 26 (7): 2782-2790.
Mahyar-Roemer M, Roemer K. p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001; 20 (26): 3387-3398.
Suzuki T, Yokozaki, H, Kuniyasu H, Hayashi K, Naka K, Ono S et al. Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int J Cancer. 2000; 88 (6): 992-997.
Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell. 2000; 11 (6): 2069-2083.
Kim HJ, Bae SC. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011; 3 (2): 166-179.
Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006; 6 (1): 38-51.
Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed. Biotechnol. 2011; 2011: 514261.
Fulda S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr Cancer Drug Targets 2008; 8 (2): 132-140.
Kwon SH, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S et al. Apicidin, a Histone Deacetylase Inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem. 2002; 277 (3): 2073-2080.
Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med. 2005; 11 (1): 77-84.
Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad. Sci USA. 2001; 98 (19): 10833-10838.
Zhao Y, Tan J, Zhuang L, Jiang X, Liu, ET, Yu Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein. Bim Proc Natl Acad Sci USA. 2005; 102 (44): 16090-16095.
Gao S, Mobley A, Miller C, Boklan, J, Chandra J. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res. 2008; 32 (5): 771-780.
Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF11. Cancer Res. 2003; 63 (13): 3637-3645.
Cipro Š, Hřebačková J, Hraběta J, Poljaková J, Eckschlager T. Valproic acid overcomes hypoxia-induced resistance to apoptosis. Oncol Rep. 2012; 27 (4): 1219-1226.
Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 2002; 111 (5): 709-720.
Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci. 2014; 71 (20): 3885-3901.
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303 (5666): 2011-2015.
Oh M, Choi IK, Kwon HJ. Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun. 2008; 369 (4): 1179-1183.
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008; 105 (9): 3374-3379.
Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP et al.. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001; 20 (24): 6969-6978.
Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008; 409: 581-589.
Bermúdez-Lugo JA, Perez-Gonzalez O, Rosales-Hernández MC, Ilizaliturri-Flores I, Trujillo-Ferrara J, Correa-Basurto J. Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J Mol Model. 2012; 18: 2301-2310.
Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007; 25: 3109-3115.
Kirschbaum MH. Histone deacetylase inhibitors and Hodgkin’s lymphoma. Lancet Oncol. 2011; 12813): 1178-1179.
Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. 2009; 27 (32): 5459-5468.
Münster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B et al. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009; 15 (7): 2488-2496.
Mohammed TA, Holen KD, Jaskula-Sztul R, Mulkerin DR, Lubner SJ, Schelman WR et al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist. 2011; 16 (6): 835-843.
Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009; 10 (3): 223-232.
Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010; 28 (4): 562-569.
Raffoux E, Cras A, Recher C, Boëlle PY, De Labarthe A, Turlure P et al. Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget. 2010; 1 (1): 34-42.
Münster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol. 2007; 25 (15): 1979-1985.
Daud AI, Dawson J, DeConti RC, Bicaku E, Marchion D, Bastien S et al. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin Cancer Res. 2009; 15 (7): 2479-2487.
Coronel J, Cetina L, Pacheco I, Trejo-Becerril C, González-Fierro A, De la Cruz-Hernández E et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol. 2011; 28 (1): S540-S546.
Kang H, Gillespie TW, Goodman M, Brodie SA, Brandes M, Ribeiro M et al. Long-term use of valproic acid in US veterans is associated with a reduced risk of smoking-related cases of head and neck cancer. Cancer. 2014; 120 (6): 1394-1400.
Dueñas-Gonzalez A, Coronel J, Cetina L, González-Fierro A, Chavez-Blanco A, Taja-Chayeb L. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. 2014; 10 (10): 1433-1444.
Luna-Palencia GR, Martínez-Ramos F, Vásquez-Moctezuma I, Fragoso-Vázquez MJ, Mendieta-Wejebe JE, Padilla-Martínez II et al. Three amino acid derivatives of valproic acid: design, synthesis, theoretical and experimental evaluation as anticancer agents. Anticancer Agents Med Chem. 2014; 14 (7): 984-993.
Prestegui-Martel B, Bermúdez-Lugo JA, Chávez-Blanco A, Dueñas-González A, García-Sánchez JR, Pérez-González OA et al. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem. 2016; 31 (3): 140-149.
Luna-Palencia GR, Correa-Basurto J, Trujillo-Ferrara J, Meraz-Ríos MA, Vásquez-Moctezuma I. Epigenetic evaluation of N-(2-hydroxyphenyl)-2-Propylpentanamide, a valproic acid aryl derivative with activity against hela cells. Curr Mol Pharmacol. 2020; 13: 1. doi.org/10.2174/1874467213666200730113828.