2020, Number 1
The Randle cycle, the precarious link between sugars and fats
Language: English
References: 67
Page: 1-10
PDF size: 290.21 Kb.
ABSTRACT
Obesity is a growing global health concern, closely related to cardiovascular diseases. Understanding the correlation between excessive sugar consumption and the formation of fat deposits, described in the Randle cycle, will allow us to have a better grasp on metabolic processes that disrupt the balance between fat formation and degradation processes. The goal of this review is to expand and update the information about the Randle cycle and describe their different levels of regulation. In addition, the participation of mTORC1 and the AMP dependent Kinase (AMPK) during the postprandial and fasting states is described.REFERENCES
Abdelmalek, M. F, Lazo, M., Horska, A., Bonekamp, S., Lipkin, E. W., Balasubramanyam, A., Bantle, J. P., Johnson, R. J., Diehl, A. M. & Clark, J. M. Fatty Liver Subgroup of Look AHEAD Research Group. (2012). Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology, 56(3), 952- 960. DOI: 10.1002/hep.25741
Aguilar, L. R. , Pardo, J. P., Lomelí, M. M., Bocardo, O. I. L., Juárez Oropeza, M. A. & Guerra Sánchez, G. (2017). Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch. Microbiol., 199(8):1195- 1209. DOI: 10.1007/s00203-017-1388-8
Baena, M., Sanguesa, G., Hutter, N., Sánchez, R. M., Roglans, N., Laguna, J. C. & Alegret, M. (2015). Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress. Biochim. Biophys. Acta, 1851(2), 107- 116. DOI: 10.1016/j.bbalip.2014.11.003
Choo, V. L., Viguiliouk, E., Blanco Mejia, S., Cozma, A. I., Khan, T.A., Ha, V., Wolever, T. M. S., Leiter, L. A., Vuksan, V., Kendall, C. W. C., de Souza, R. J., Jenkins, D. J. A. & Sievenpiper, J. L. (2018). Food sources of fructosecontaining sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ, 363, k4644. DOI: 10.1136/bmj.k4644
Fuchs, C. D., Claudel, T., Kumari, P., Haemmerle, G., Pollheimer, M. J., Stojakovic, T., Scharnagl, H., Halilbasic, E., Gumhold, J., Silbert, D., Koefeler, H. & Trauner, M. (2012). Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology, 56(1), 270-280. DOI: 10.1002/ hep.25601
Hasenour, C. M., Ridley, D. E., James, F. D., Hughey, C. C., Donahue, E. P., Viollet, B., Foretz, M., Young, J. D. & Wasserman, D. H. (2017). Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS One, 12(1), e0170382. DOI: 10.1371/journal.pone.0170382
Ishimoto, T., Lanaspa, M. A., Rivard, C. J., Roncal-Jimenez C. A., Orlicky, D. J., Cicerchi, C., McMahan, R. H., Abdelmalek, M. F., Rosen, H. R., Jackman, M. R., MacLean, P. S., Diggle, C. P., Asipu, A., Inaba, S., Kosugi, T., Sato, W., Maruyama, S., Sánchez-Lozada, L. G., Sautin, Y.Y ., Hill, J. O., Bonthron, D. T. & Johnson, R. J. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology, 58(5), 1632-1643. DOI: 10.1002/hep.26594
Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J, Khan, T. A., Leiter, L. A., Wolever, T. M., Kendall, C. W., Jenkins, D. J. & Sievenpiper, J. L. (2016). Fructose intake and risk of gout and hyperuricemia: a systematic review and metaanalysis of prospective cohort studies. BMJ Open, 6(10), e013191. DOI: 10.1136/bmjopen-2016-013191
Jensen, T., Abdelmalek, M. F., Sullivan, S., Nadeau, K. J., Green, M., Roncal, C., Nakagawa, T., Kuwabara, M., Sato, Y., Kang, D. H., Tolan, D. R., Sanchez-Lozada, L. G., Rosen, H. R, Lanaspa, M. A., Diehl, A. M. & Johnson, R. J. (2018). Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol., 68(5), 1063- 1075. DOI: 10.1016/j.jhep.2018.01.019
Loza-Medrano, S. S., Baiza-Gutman, L. A., Manuel-Apolinar, L., García-Macedo, R., Damasio-Santana, L., Martínez- Mar, O. A., Sánchez-Becerra, M. C., Cruz-López, M., Ibáñez-Hernández, M. A. & Díaz-Flores, M. (2019). High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamidemediated modulation of redox homeostasis and NADPHproducing enzymes. Mol. Biol. Rep., 47(1), 337-351. DOI: 10.1007/s11033-019-05136-4
Lustig, R. H. (2010). Fructose: metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc., 110(9), 1307-1321. DOI: 10.1016/j.jada.2010.06.008 Mai, B. H. & Yan, L. J. (2019). The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes Metab. Syndr. Obes., 12, 821-826. DOI: 10.2147/DMSO.S198968
Marcelino, H., Veyrat-Durebex, C., Summermatter, S., Sarafian, D., Miles-Chan, J., Arsenijevic, D., Zani, F., Montani, J. P., Seydoux, J., Solinas, G., Rohner- Jeanrenaud, F. & Dulloo, A. G. (2013). A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes, 62(2), 362-372. DOI: 10.2337/db12-0255
Mottillo, E. P., Balasubramanian, P., Lee, Y. H., Weng, C., Kershaw, E. E. & Granneman, J. G. (2014). Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid. Res., 55(11), 2276-2286. DOI: 10.1194/jlr.M050005
Pietrocola, F., Demont, Y., Castoldi, F., Enot, D., Durand, S., Semeraro, M., Baracco, E. E., Pol, J., Bravo-San Pedro, J. M., Bordenave, C., Levesque, S., Humeau, J., Chery, A., Métivier, D., Madeo, F., Maiuri, M. C. & Kroemer, G. (2017). Metabolic effects of fasting on human and mouse blood in vivo. Autophagy, 13(3), 567-578. DOI: 10.1080/15548627.2016.1271513
Roglans, N., Sanguino, E., Peris, C., Alegret, M., Vázquez, M., Adzet, T., Díaz, C., Hernández, G., Laguna, J. C. & Sánchez, R. M. (2002). Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J. Pharmacol. Exp. Ther., 302(1), 232-239. DOI: 10.1124/jpet.302.1.232
Sánchez-Gurmaches, J., Tang, Y., Jespersen, N. Z., Wallace, M., Martinez Calejman, C., Gujja, S., Li, H., Edwards, Y. J. K., Wolfrum, C., Metallo, C. M., Nielsen, S., Scheele, C. & Guertin, D. A. (2018). Brown Fat AKT2 Is a Cold- Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab., 27(1), 195-209 e196. DOI: 10.1016/j.cmet.2017.10.008