2020, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Functionalization of edible coating chitosan-based for fruits and vegetables postharvest preservation
Anaya-Esparza LM, Pérez-Larios A, Ruvalcaba-Gómez JM, Sánchez-Burgos JA, Romero-Toledo R, Montalvo-González E
Language: Spanish
References: 69
Page: 1-14
PDF size: 498.32 Kb.
ABSTRACT
In recent years, the development and application of safe and biodegradable edible coatings, with superior technological
and functional properties have been studied to extend the shelf life of fresh fruit and vegetables. Chitosan is one of
the most promising biomaterials for the development of edible coatings. However, the main disadvantage of this
polysaccharide is related to the high water vapor permeability that it presents, therefore, an alternative to improve its
performance, is its functionalization through the incorporation of organic (essential oils, natural extracts, ascorbic acid,
protein hydrolysates, and polysaccharides) and inorganic compounds (SiO
2, TiO
2, ZnO, Ag, and montmorillonite), but
also, the addition of microorganisms (yeast) in the chitosan matrix. The application of edible functionalized-chitosan
coatings on fruits and vegetables has given better results (significant prolongation of the shelf life and minimal changes
in quality parameters) than those obtained when pure chitosan-coating was applied. This review describes the advantages
and limitations of functionalization of edible chitosan films in the preservation of post-harvest of fruit and vegetables.
REFERENCES
Arce-Ortiz, K. L., Ortega-Villalba, K. J., Ochoa-Martínez, C. I. & Vélez-Pasos, C. (2016). Evaluation of the water vapor permeability for whey protein/chitosan films and its effect on respiration of coated banana. INNOTEC, 11(1), 59–64.
Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest–a review. Revista Chapingo Serie Horticultura, 23(2), 103–121. DOI: http://dx.doi.org/10.5154/r. rchsh.2016.11.030
Berumen-Varela, G., Coronado Partida, L. D., Ochoa Jiménez, V. A., Chacón López, M. A. & Gutiérrez Martínez, P. (2015). Effect of chitosan on the induction of disease resistance against Colletotrichum sp. in mango (Mangifera indica L.) cv. Tommy Atkins. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 66(1), 16–21.
Bilalis, P., Katsigiannopoulos, D., Avgeropoulos, A. & Sakellariou, G. (2014). Non-covalent functionalization of carbon nanotubes with polymers. RCS Advances, 4, 2911–2934. DOI: 10.1039/C3RA44906H
Bosquez-Molina, E., Ronquillo-de Jesús, E., Bautista-Baños, S., Verde-Calvo, J. R. & Morales-López, J. (2010). Evaluation of the inhibitory effect of essential oils against Colletotrichum gloesoporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology, 57, 132–137. DOI: https://doi.org/10.1016/j.postharvbio.2010.03.008
Campos, R. P., Kwiatkowski, A. & Clemente, E. (2011). Post-harvest conservation of organic strawberries coated with cassava starch and chitosan. Revista Ceres, 58(5), 554–560. DOI: http://dx.doi.org/10.1590/S0034- 737X2011000500004
Castillo-Escandón, V., Fernández-Michel, S. G., Cueto-Wong, M. C. & Montfort, G. R. C. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada en Ciencias Químico-Biológicas, 22(1), 1–17. DOI: https://doi.org/10.22201/fesz.23958723e.2019.0.173
Chantrasri, P., Sardsud, V., Sangchote, S. & Sardsud, U. (2007). Combining yeasts and chitosan treatment to reduce anthracnose fruit rot in mangoes. Asian Journal of Biology Education, 3(1), 40–46.
Chen, Y. C., Wang, C. H., Lai, L. S. & Lin, K. W. (2003). Rheological properties of chitosan and its interaction with porcine myofibrillar proteins as influenced by chitosan´s degree of deacetylation and concentration. Journal of Food Science: Food Chemistry and Toxicology, 68(3), 826–831. DOI: https://doi.org/10.1111/j.1365-2621.2003.tb08250.x
Chiabrando, V. & Giacalone, G. (2016). Effect of chitosan and sodium alginate edible coatings on the postharvest quality of fresh-cut nectarines during storage. Fruits, 71(2), 79–85. DOI: 10.1051/fruits/2015049
de Assis-Alves, T., Fontes-Pinheiro, P., Praca-Fontes, M. M., Andrade-Vieira, L. F., Barelo-Correa, K., de Assis-Alves, T., Aparecida da Cruz, F., Lacerda-Junior, V., Ferreira, A. & Bastos-Soares, T. C. (2018). Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Industrial Crops and Products, 114, 59–67. DOI: https://doi.org/10.1016/j. indcrop.2018.01.071
Di Pierro, P., Chico, B., Villalonga, R., Mariniello, L., Damiao, A. E., Masi, P. & Pota, R. (2006). Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analyisis of their mechanical and barrier properties. Biomacromolecules, 7(1), 744–749. DOI: 10.1021/bm050661u
Fortunati, E., Giovanale, G., Luzi, F., Mazzaglia, A., Kenny, J. M., Torre, L. & Balestra, G. M. (2017). Effective postharvest preservation of kiwifruit and romaine lettuce with a chitosan hydrochloride coating. Coatings, 7, 2–15. DOI: https://doi. org/10.3390/coatings7110196
Gol, N. B., Patel, P. R. & Ramana-Rao, T. V. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85(1), 185–195. DOI: https://doi.org/10.1016/j. postharvbio.2013.06.008
Gutiérrez-Martínez, P., Bautista-Baños, S., Berúmen-Varela, G., Ramos-Guerrero, A. & Hernández-Ibáñez, A. M. (2017). In vitro response of Colletotrichum to chitosan. in vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango. Acta Agronomica, 66(2), 282–289. DOI: http:// dx.doi.org/10.15446/acag.v66n2.53770
Hajji, S., Younes, I., Affes, S., Boufi, S. & Nasri, M. (2018). Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 83(1), 375–392. DOI: https://doi. org/10.1016/j.foodhyd.2018.05.013
Jiao, W., Shu, C., Li, X., Cao, J., Fan, X. & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154(1), 129–136. DOI: https://doi.org/10.1016/j. postharvbio.2019.05.003
Kaewklin, P., Siripatrawan, U., Suwanagul, A. & Lee, Y.S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112(1), 523–529. DOI: https://doi.org/10.1016/j. ijbiomac.2018.01.124
Kim, K.W. & Thomas, R. L. (2007). Antioxidative activity of chitosan with varying molecular weights. Food Chemistry, 101, 308–313. DOI: 10.1016/j.foodchem.2006.01.038
Layek, R. K. & Nandi, A. K. (2013). A review on synthesis and properties of polymer functionalized graphene. Polymer, 54, 5087–5103. DOI: https://doi.org/10.1016/j. polymer.2013.06.027
Li, N. Y., Ye, Q. Q., Hou, W. F. & Zhang, G. Q. (2018). Development of antibacterial ε-polylysine/chitosan hybrid films and the effect on citrus. International Journal of Biological Macromolecules, 118, 2051–2056. DOI: 10.1016/j.ijbiomac.2018.07.074
Liu, K., Yuan, C., Chen, Y., Li, H. & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. DOI: https://doi.org/10.1016/j. scienta.2014.06.027
López, A., Rivas, J., Loaiza, M. & Sabino, M. (2010). Degradación de películas plastificadas de quitosano obtenidas a partir de conchas de camarón. Revista de la Facultad de Ingeniería UCV, 25, 133–143.
López-Mata, M. A., Ruiz-Cruz, S., Navarro-Preciado, C., Ornelas-Paz, J. J., Estrada-Alvarado, M. I. & Gassos- Ortega, L. E. (2012). Effect of chitosan edible coatings in the microbial reduction and conservation of the quality of strawberries. Revista de Ciencias Biológicas y de la Salud, 14(1), 33–43.
Maccora, D., Dini, V., Battocchio, C., Fratoddi, I., Cartoni, A., Rotili, D., Castagnola, M., Faccini, R., Bruno, I., Scotognella, T., Giordano, A. & Venditti, I. (2019). Gold nanoparticles and nanorods in nuclear medicine: A mini review. Applied Sciences, 9, 3232. DOI: 10.3390/app9163232
Santana, J. T., De Dios-Aguilar, M. A., Colín-Chávez, C., Mariscal-Amaro, L. A., Nuñez-Colín, C. A., Veloz- García, R., Gizmán-Maldonado, S. H., Peña-Caballero, V., Grijalva-Verdugo, C. P. & Rodríguez-Núñez, J. R. (2019). Coating based on chitosan and aqueous extract of Moringa oleifera leaf obtained by UMAE and its effect on the physicochemical properties of strawberry (Fragaria x ananassa). Revista de Ciencias Biológicas y de la Salud, 21(2), 155–163.
Medeiros, B. G. S., Pinheiro, A. C., Carneiro-da-Cunha, M. G. & Vicente, A. A. (2012). Development and characterization of a nanomultilayer coating of pectin and chitosan–Evaluation of its gas barrier properties and application on ‘Tommy Atkins’ mangoes. Journal of Food Engineering, 110(3), 457–464. DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.021
Mohammadi, A., Hashemi, M. & Hosseini, S. M. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology, 110(1), 203–213. DOI: https://doi.org/10.1016/j. postharvbio.2015.08.019
Mohandas, A., Deepthi, S., Biswas, R. & Jayakumar, R. (2017). Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials, 3, 267– 277. DOI: https://doi.org/10.1016/j.bioactmat.2017.11.003
Mujtaba, M., Mosri, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J. & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology: A review. International Journal of Biological Macromolecules, 121(1), 889–904. DOI: https://doi. org/10.1016/j.ijbiomac.2018.10.109
Nurul-Hanani, M. Z., Halimahton-Zahrah, M. S. & Zaibunnisa, A. H. (2012). Effect of chitosan-palm stearin edible coating on the postharvest life of star fruits (Averrhoa carambola L.) stored at room temperature. International Food Research Journal, 19(4), 1433–1438.
Nurul-Hanani, M. Z., Halimahton-Zahrah, M. S. & Zaibunnisa, A. H. (2016). Effect of edible lipid-chitosan film forming dispersion on postharvest life of guava stored at chilled temperature. Malasyan Journal of Analytical Sciences, 20(3), 618–625. DOI: http://dx.doi.org/10.17576/mjas- 2016-2003-22
Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147(1), 174–184. DOI: https://doi.org/10.1016/j. postharvbio.2018.09.021
Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Di Stasio, M. & Volpe, M. G. (2016). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9(11), 1951–1960. DOI: https:// doi.org/10.1007/s11947-016-1779-x
Perdones, A., Sánchez-González, L. & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storagekeeping quality of strawberry. Postharvest Biology and Technology, 70(1), 32–41. DOI: https://doi.org/10.1016/j. postharvbio.2012.04.002
Porat, R., Lichter, A., Terry, L. A., Harker, R. & Buzby, J. (2018). Postharvest losses of fruit and vegetables during retail and it consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology, 139, 135–149. DOI: https://doi.org/10.1016/j. postharvbio.2017.11.019
Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Térres-Rojas, E., Alia-Tejacal, I., Barrera-Necha, L., Hernández-López, M. & Bautista- Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38(1), 1-6. DOI: https://doi. org/10.1016/j.cropro.2012.02.016
Ramos-Guerrero, A., González-Estrada, R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado-Hernández, M. E. & Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology, 27(3), 755–763. DOI: https://doi. org/10.1007/s10068-018-0305-5
Rasouli, M., Saba, M. K. & Ramezanian, A. (2019). Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Scientia Horticulturae, 247, 27–34. DOI: https://doi.org/10.1016/j. scienta.2018.12.004
Rico, F., Gutiérrez, C. & Díaz-Moreno, C. (2012). Effect of edible coating of chitosan and essential oils on microbiological quality of minimally processed mango (Mangifera indica L.). Vitae, 19 (1), S117–S119.
Rinaudo, M. (2008). Behaviour of amphiphilic polysaccharides in aqueous medium. TIP Revista Especializada en Ciencias Químico-Biológicas, 11(1), 35–40.
Rinaudo, M. (2014). Biomaterials based on a natural polysaccharide: alginate. TIP Revista Especializada en Ciencias Químico-Biológicas, 17(1), 92–96. DOI: https:// doi.org/10.1016/S1405-888X(14)70322-5
Robledo, S. N., Pierini, G. D., Díaz-Nieto, C. H., Fernández, H., & Zon, M. A. (2019). Development of an electrochemical method to determine phenolic monoterpenes in essential oils. Talanta, 196, 362–369. DOI: https://doi.org/10.1016/j. talanta.2018.12.069
Rodríguez-Guzmán, C. A., González-Estrada, R. R., Bautista- Baños, S. & Gutiérrez-Martínez, P. (2019). Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1–7. DOI: 10.22201/ fesz.23958723e
Rojas-Grau, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends in Food Science & Technology, 20(10), 438–447. DOI: https://doi. org/10.1016/j.tifs.2009.05.002
Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez- Martínez, P. & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94.
Shao, X., Cao, B., Xu, F., Xie, S., Yu, D. & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99(1), 34–43. DOI: https://doi.org/10.1016/j. postharvbio.2014.07.014
Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y. & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118(1), 125–131. DOI: https:// doi.org/10.1016/j.jfoodeng.2013.03.029
Solano-Doblado, L. G., Alamilla-Beltrán, L. & Jiménez- Martínez, C. (2018). Películas y recubrimientos comestibles funcionalizados. TIP Revista Especializada en Ciencias Químico-Biológicas, 21(2), 30–42. DOI: https://doi. org/10.22201/fesz.23958723e.2018.0.153
Sun, D., Liang, G., Xie, J., Lei, X. & Mo, Y. (2010). Improved preservation effects of litchi fruit by combining chitosan coating with ascorbic acid treatment during postharvest storage. African Journal of Biotechnology, 9 (22), 3272–3279.
Sun, X., Narciso, J., Wang, Z., Ference, C., Bai, J. & Zhou, K. (2014). Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. Journal of food science, 79(5), 955–960. DOI: 10.1111/1750-3841.12447
Torres-Aguirre, G. A., Muñoz-Bernal, O. A., Álvarez- Parrilla, E., Nuñez-Gastelúm, J. A., Wall-Medrano, A., Sáyago-Ayerdi, S. G. & de la Rosa, L. A. (2018). Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. TIP Revista Especializada en Ciencias Químico- Biológicas, 21(2), 103–115. DOI: https://doi.org/10.22201/ fesz.23958723e.2018.2.137
USDA. (2016). United States Department of Agriculture. The commercial storage of fruits, vegetables, and florist and nursery stocks. En K. C. Gross, C. Y. Wang, & M. Saltveit (Eds.), Agriculture Handbook (pp. 11–166). California, USDA. https://www.ars.usda.gov/ARSUserFiles/oc/np/ CommercialStorage/CommercialStorage.pdf
Valenzuela, C., Tapia, C., Lopéz, L., Bunger, A., Escalona, V. & Abugoch, L. (2015). Effect of edible quinoa protein-chitosan based films on refrigerated strawberry (Fragaria × ananassa) quality. Electronic Journal of Biotechnology, 18(6), 406–411. DOI: https://doi. org/10.1016/j.ejbt.2015.09.001
Wang, F., Deng, J., jiao, J., Lu, Y., Yang, L. & Shi, Z. (2019). The combined effects of carboxymethyl-chitosan and Cryptococcus laurentii treatment on postharvest blue mold caused by Penicillium italicum in grapefruit fruit. Scientia Horticulturae, 253(1), 35–41. DOI: https://doi. org/10.1016/j.scienta.2019.04.031
Wu, C., Wang, L., Fang, Z., Hu, Y., Chen, S., Sugawara, T. & Ye. X. (2016). The effect of the molecular architecture on the antioxidant properties of chitosan gallate. Marine Drugs, 14(5), 95. DOI: 10.3390/md14050095
Y., Li, X., Xu, Q., Yun, J., Lu, Y. & Tang, Y. (2011a). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124(4), 1443–1450. DOI: https://doi. org/10.1016/j.foodchem.2010.07.105
Xing, Y., Xu, Q., Che, Z., Li, X. & Li, W. (2011b). Effects of chitosan-oil coating on blue mold disease and quality attributes of jujube fruits. Food & Fucntion, 2(8), 446–474. DOI: 10.1039/c1fo10073d
Xoca-Orozco, L. A., Cuellar-Torres, E. A., González-Morales, S., Gutiérrez-Martínez, P., López-García, U., Herrera- Estraella, L., Vega-Arreguín, J. & Chacón-López, A. (2017). Transcriptomic analysis of avocado Hass (Persea americana Mill) in the interaction system fruit-chitosancolletotrichum, Frontiers in Plant Science, 8, 956. DOI: 10.3389/fpls.2017.00956
Xu, D., Qin, H. & Ren, D. (2018). Prolonged preservation of tangerine fruits using chitosan/montmorillonite composite coating. Postharvest Biology and Technology, 143(1), 50-57. DOI: https://doi.org/10.1016/j. postharvbio.2018.04.013
Xu, W. T., Huang, K. L., Guo, F., Qu, W., Yang, J. J., Liang, Z. H. & Luo, Y.B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology, 46(1), 86–94. DOI: https://doi.org/10.1016/j.postharvbio.2007.03.019
Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y. & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92(1), 46- 53. DOI: https://doi.org/10.1016/j.postharvbio.2014.01.018
Yin, C., Huang, C., Wang, J., Liu, Y., Lu, P. & Huang, L. (2019). Effect of chitosan- and alginate-based coatings enriched with cinnamon essential oil microcapsules to improve the postharvest quality of mangoes. Materials, 12, 2039. DOI: https://doi.org/10.3390/ma12132039
Youwei, Y. & Yinzhe, R. (2013). Grape preservation using chitosan combined with B-cyclodextrin. International Journal of Agronomy, ID: 209235, 1–8. DOI: http://dx.doi. org/10.1155/2013/209235
Yuan, G., Chen, X. & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 89(1), 117–128. DOI: https:// doi.org/10.1016/j.foodres.2016.10.004
Yu, Y., Zhang, S., Ren, Y., Li, H., Zhang, X. & Di, J. (2012). Jujube preservation using chitosan film with nano-silicon dioxide. Journal of Food Engineering, 113(3), 408–414. DOI: https://doi.org/10.1016/j.jfoodeng.2012.06.021
Zhang, D., Wang, H., Hu, Y. & Liu, Y. (2015a). Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway. Journal of Agricultural and Food Chemistry, 63, 7399–7404. DOI: https://doi.org/10.1021/acs.jafc.5b01566
Zhang, L., Chen, F., Lai, L., Wang, H. & Yang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT - Food Science and Technology, 96(1), 604–611. DOI: https://doi. org/10.1016/j.lwt.2018.06.011
Zhang, Y., Zhang, M. & Yang, H. (2015b). Postharvest chitosang- salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry, 174(1), 558–563. DOI: https://doi.org/10.1016/j. foodchem.2014.11.106