2020, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Microbiological approaches for the treatment of spent catalysts
Rivas-Castillo AM, Rojas-Avelizapa NG
Language: English
References: 105
Page: 1-13
PDF size: 252.85 Kb.
ABSTRACT
Homogeneous and heterogeneous catalysts are widely used for diverse industrial processes in order to produce clean
fuels and many other valuable products, being spent hydroprocessing catalysts the major solid wastes of the refinery
industries and the main contribution to the generation of spent catalysts. Because of its hazardous nature, the treatment
and metal recovery from this kind of residues has gained increasing importance, due to the depletion of natural resources
and environmental pollution. Although there are techniques already available for these purposes, they generate large
volumes of potentially risky wastes and produce the emission of harmful gases. Thus, biotechnological techniques
may represent a promissory alternative for the biotreatment and recovery of metals contained in spent catalysts.
To this end, diverse microorganisms, comprising bacteria, archaea and fungi, have been analyzed to characterize
their metal removal abilities from spent catalysts. A broad scenario about the advances regarding to the management
and traditional treatment of spent catalysts is presented, followed by a detailed overview of the microbiological
biotreatment approaches reported to date.
REFERENCES
Acevedo, F. (2002). Present and future of bioleaching in developing countries. Electronic Journal of Biotechnology, 5, 1-4. DOI:10.2225/vol5-issue2-fulltext-10.
Acevedo, F., Gentina, J. C. & Bustos, S. (1993). Bioleaching of minerals — a valid alternative for developing countries. Journal of Biotechnology, 31, 115–123. DOI:10.1016/0168-1656(93)90141-9
Acharya, R. (1990). Bacterial leaching: A potential for developing countries. Genetic Engineering and Biotechnology Monitor, 27, 57-59.
Akcil, A., Vegliò, F., Ferella, F., Okudan, M. D. & Tuncuk, A. (2015). A review of metal recovery from spent petroleum catalysts and ash. Waste Management, 45, 420–433. DOI:10.1016/j.wasman.2015.07.007.
Amiri, F., Yaghmaei, S. & Mousavi, S. M. (2011). Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresource Technology, 102, 1567–1573. DOI:10.1016/j.biortech.2010.08.087.
Amiri, F., Mousavi, S. M., Yaghmaei, S. & Barati, M. (2012). Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochemical Engineering Journal, 67, 208–217. DOI:10.1016/j. bej.2012.06.011.
Arenas-Isaac, G., Gómez-Ramírez, M., Montero-Álvarez, L. A., Tobón-Avilés, A., Fierros-Romero, G. & Rojas- Avelizapa, N. G. (2017). Novel microorganisms for the treatment of Ni and V as spent catalysts. Indian Journal of Biotechnology, 16, 370-379.
Asghari, I., Mousavi, S. M., Amiri, F. & Tavassoli S. (2013). Bioleaching of spent refinery catalysts: A review. Journal of Industrial and Engineering Chemistry, 19, 1069-1081. DOI:10.1016/j.jiec.2012.12.005
Aung, K. M. M. & Ting, Y. P. (2005). Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology, 116, 159–170. DOI:10.1016/j. jbiotec.2004.10.008.
Beolchini, F., Fonti, V., Ferella, F. & Vegliò, F. (2010a). Metal recovery from spent refinery catalysts by means of biotechnological strategies. Journal of Hazardous Materials, 178, 529–534. DOI:10.1016/j. jhazmat.2010.01.114.
Beolchini, F., Rocchetti, L., Regoli, F. & Dell’Anno, A. (2010b). Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling. Journal of Hazardous Materials, 182, 403–407. DOI:10.1016/j.jhazmat.2010.06.047.
Beolchini, F., Fonti, V., Dell’Anno, A., Rocchetti, L. & Vegliò, F. (2012). Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Management, 32, 949–956. DOI:10.1016/j.wasman.2011.10.014.
Bharadwaj, A. & Ting, Y. P. (2013). Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresource Technology, 130, 673–680. DOI:10.1016/j.biortech.2012.12.047.
Bitemirova, A. E., Alihanova, H. B., Spabekova, R. S., Shagrayeva, B. B. & Ermahanov, M. N. (2015). Regeneration of spent catalysts for furfural decarbonylation. Modern Applied Science, 9, 358-366. DOI:10.5539/mas.v9n5p358.
Bosshard, P. P., Bachofen, R. & Brandl, H. (1996). Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environmental Science and Technology, 30, 3066–3070. DOI:10.1021/es960151v.
Brandl, H., Bosshard, R. & Wegmann, M. (2001). Computermunching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59, 319–326. DOI:10.1016/S0304-386X(00)00188-2.
Brandl, H., Lehmann, S., Faramarzi, M. A. & Martinelli, D. (2008). Biomobilization of silver, gold, and
Bredberg, K., Karlsson, H. T. & Holst, O. (2004). Reduction of vanadium (V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Bioresource Technology, 92, 93–96. DOI:10.1016/j.biortech.2003.08.004.
Brierley, C.L. (2008). How will biomining be applied in future? Transactions of Nonferrous Metals Society of China, 18, 1302–1310. DOI:10.1016/S1003-6326(09)60002-9.
Brombacher, C., Bachofen, R. & Brandl, H. (1997). Biohydrometallurgical processing of solids: A patent review. Applied Microbiology and Biotechnology, 48, 577–587. DOI:10.1007/s002530051099.
Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27, 91–116. DOI:10.1016/0168-1656(93)90101-R.
Cerruti, C., Curutchet, G. & Donati, E. (1998). Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. Journal of Biotechnology, 62, 209–219. DOI:10.1016/S0168-1656(98)00065-0.
Chartier, M. & Couillard, D. (1997). Biological processess: the effects of initial pH, percentage inoculum and nutrient enrichment on the solubilization of sediment bound metals. Water, Air, and Soil Pollution, 96, 249–267. DOI:10.1023/A:1026472821060.
Chen, S.Y. & Lin, J. G. (2004). Bioleaching of heavy metals from contaminated sediment by indigenous sulfuroxidizing bacteria in an air-lift bioreactor: Effects of sulfur concentration. Water Research, 38, 3205–3214. DOI:10.1016/j.watres.2004.04.050.
Chiranjeevi, T., Pragya, R., Gupta, S., Gokak, D. T. & Bhargava, S. (2016). Minimization of waste spent catalyst in refineries. Procedia Environmental Sciences, 35, 610- 617. DOI:10.1016/j.proenv.2016.07.047
Choi, K. H., Kunisada, N., Korai, Y., Mochida, I. & Nakano, K. (2003). Facile ultra-deep desulfurization of gas oil through two-stage or -layer catalyst bed. Catalysis Today, 86, 277–286. DOI:10.1016/S0920-5861(03)00413-9.
DaSilva, E. J. (1981). The renaissance of biotechnology: Man, microbe, biomass and industry. Acta Biotechnologica, 1, 207–246. DOI:10.1002/abio.370010302.
Deveci, H., Akcil, A. & Alp, I. (2004). Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron. Hydrometallurgy, 73, 293–303. DOI:10.1016/j. hydromet.2003.12.001.
Dronawat, S. N., Svihla, C. K. & Hanley, T. R. (1995). The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger. Applied Biochemistry and Biotechnology, 51-52, 347–354. DOI:10.1007/ BF02933438.
Eijsbouts, S., Battiston, A. & van Leerdam, G. C. (2008). Life cycle of hydroprocessing catalysts and total catalyst management. Catalysis Today, 130, 361–373. DOI:10.1016/j.cattod.2007.10.112
Fan, J., Onal Okyay, T. & Rodrigues, D. (2014). The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. Journal of Hazardous Materials, 279, 236–243. DOI:10.1016/j. jhazmat.2014.07.016.
Faramarzi, M. A., Stagars, M., Pensini, E., Krebs, W. & Brandl, H. (2004). Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology, 113, 321–326. DOI:10.1016/j.jbiotec.2004.03.031.
Faramarzi, M. A. & Brandl, H. (2006). Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiology letters, 259, 47–52. DOI:10.1111/j.1574- 6968.2006.00245.x.
Ferreira, P. F., Sérvulo, E. F. C., Ferreira, D. M. & Oliveira, F. J. S. (2016). Assessment of metal recovery from raw spent hydrodesulfurization catalyst through bioleaching and chemical leaching. Brazilian Journal of Petroleum and Gas, 9, 137–145. DOI:10.5419/bjpg2015-0014.
Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109– 119. DOI:10.1016/j.geoderma.2004.01.002.
Garza-González, M. T., Barboza-Pérez, D., Vázquez- Rodríguez, A., García-Gutiérrez, D. I., Zarate, X., Cantú- Cárdenas, M. E. & Cárdenas, M. C. (2016). Correction: metal-induced production of a novel bioadsorbent exopolysaccharide in a native Rhodotorula mucilaginosa from the Mexican northeastern region. PLOS ONE, 11, e0150522. DOI:10.1371/journal.pone.0150522.
Gentina, J. C., & Acevedo, F. (1985). Microbial ore leaching in developing countries. Trends in Biotechnology, 3, 86– 89. DOI:10.1016/0167-7799(85)90087-3.
Gerayeli, F., Ghojavand, F., Mousavi, S.M., Yaghmaei, S. & Amiri, F. (2013). Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Separation and Purification Technology, 118, 151–161. DOI:10.1016/j.seppur.2013.06.033.
Gholami, R. M., Borghei, S. M. & Mousavi, S. M. (2011). Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 106, 26–31. DOI:10.1016/j.hydromet.2010.11.011.
Gholami, R. M., Razeghi, N. & Ghasemi, S. (2015). Bioseparation of heavy metals from spent catalysts using Acidithiobacillus thiooxidans. Journal of Scientific Research and Development, 2, 53–56.
Gómez-Ramírez, M., Flores-Martínez, Y. A., López- Hernández, L. J. & Rojas-Avelizapa, N. G. (2014). Effect of Fe2+ concentration on microbial removal of Ni and V from spent catalyst. Journal of Chemical, Biological and Physical Sciences Section B: Environmental Biotechnology, 4, 101-109.
Gómez-Ramírez, M., Montero-Álvarez, L. A., Tobón-Avilés, A., Fierros-Romero, G., & Rojas-Avelizapa, N. G. (2015a). Microbacterium oxydans and Microbacterium liquefaciens: A biological alternative for the treatment of Ni-V-containing wastes. Journal of Environmental Science and Health Part A. Toxic/Hazardous Substances and Environmental Engineering, 50, 37–41. DOI:10.108 0/10934529.2015.994953.
Gómez-Ramírez, M., Plata-González, A., Fierros-Romero, G. & Rojas-Avelizapa, N. G. (2015b). Novel filamentous fungi for metal removal from spent catalyst. Advanced Materials Research, 1130, 673-676. DOI:10.4028/www. scientific.net/AMR.1130.673.
Grewal, H. S. & Kalra, K. L. (1995). Fungal production of citric acid. Biotechnology Advances, 13, 209–234. DOI:10.1016/0734-9750(95)00002-8.
Groudev, S. N. Spasova, I., Georgiev, P. & Nicolova, M. (2014). High quality kaolin produced by microbial treatment. Annual of the University of Mining and Geology, Sofia, Part II, 57, 115–119.
Hong, Y. & Valix, M. (2014). Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production, 65, 465–472. DOI:10.1016/j. jclepro.2013.08.043.
Islam, E. & Sar, P. (2016). Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum. Ecotoxicology and Environmental Safety, 127, 12-21. DOI:10.1016/j. ecoenv.2016.01.001.
Johnson, D. B. (2013). Development and application of biotechnologies in the metal mining industry. Environmental Science and Pollution Research International, 20, 7768-7776. DOI:10.1007/s11356-013- 1482-7.
Jong, W., Rhoads, S., Stubbs, A. & Stoelting, T. (1992). Recovery of principal metal values from waste hydroprocessing catalysts. Washington: US Bureau of Mines, US Department of Interior RI 9252.
Kaushik, P., Rawat, N., Mathur, M., Raghuvanshi, P., Bhatnagar, P., Swarnkar, H. & Flora, S. (2012). Arsenic hyper-tolerance in four Microbacterium species isolated from soil contaminated with textile effluent. Toxicology International, 19, 188–94. DOI:10.4103/0971-6580.97221.
Kim, D. J., Mishra, D., Park, K. H., Ahn, J. G. & Ralph, D. E. (2008). Metal leaching from spent petroleum catalyst by acidophilic bacteria in presence of pyrite. Materials Transactions, 49, 2383–2388. DOI:10.2320/matertrans. MER2008187.
Kim, S. C., & Shim, W. G. (2008a). Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene. Journal of Hazardous Materials, 154, 310–316. DOI:10.1016/j. jhazmat.2007.10.027.
Kim, S. C. & Shim, W. G. (2008b). Recycling the copper based spent catalyst for catalytic combustion of VOCs. Applied Catalysis B: Environmental, 79, 149–156. DOI:10.1016/j.apcatb.2007.10.016.
Konishi, Y., Tokushige, M., Asai, S. & Suzuki, T. (2001). Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors. Hydrometallurgy, 59, 271–282. DOI:10.1016/S0304-386X(00)00173-0.
Krebs, W., Brombacher, C., Bosshard, P. P., Bachofen, R. & Brandl, H. (1997). Microbial recovery of metals from solids. FEMS Microbiology Reviews, 20, 605-617. DOI:10.1016/S0168-6445(97)00037-5.
Lee, J. & Pandey, B. D. (2012). Bio-processing of solid wastes and secondary resources for metal extraction–A review. Waste Management, 32, 3–18. DOI:10.1016/j. wasman.2011.08.010.
Liles, A.W. & Schwartz, R. D. (1976). Method of treating waste water. US patent 3,968,036.
Liu, C., Yu, Y. & Zhao, H. (2005). Hydrodenitrogenation of quinoline over Ni–Mo/Al2O3 catalyst modified with fluorine and phosphorus. Fuel Processing Technology, 86, 449–460. DOI:10.1016/j.fuproc.2004.05.002.
Liu, Y. G., Zhou, M., Zeng, G. M., Wang, X., Li, X., Fan, T., & Xu, W. H. (2008). Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresource Technology, 99, 4124–4129. DOI:10.1016/j.biortech.2007.08.064.
Llanos, Z. R. & Lacave, J. D.W. (1986). Treatment of spent hydroprocessing catalysts at Gulf Chemical and Metallurgical Corporation. In SME Annual Meeting. (Preprint No. 86-43). Louisiana, March 2–6.
Luque-Almagro, V. M., Moreno-Vivián, C. & Roldán, M. D. (2016). Biodegradation of cyanide wastes from mining and jewellery industries. Current Opinion in Biotechnology, 38, 9–13. DOI:10.1016/j.copbio.2015.12.004.
Marafi, M. & Stanislaus, A. (2007). Studies on recycling and utilization of spent catalysts: Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts. Applied Catalysis B: Environment, 71, 199-206. DOI:10.1016/j. apcatb.2006.09.005.
Marafi, M. & Stanislaus, A. (2008a). Spent catalyst waste management: A review: Part I—Developments in hydroprocessing catalyst waste reduction and use. Resources, Conservationand Recycling, 52, 859–873. DOI:10.1016/j.resconrec.2008.02.004.
Marafi, M. & Stanislaus, A. (2008b). Spent hydroprocessing catalyst management: A review: Part II. Advances in metal recovery and safe disposal methods. Resources, Conservation and Recycling, 53, 1-26. DOI:10.1016/j. resconrec.2008.08.005.
Marafi, M., Stanislaus, A. & Furimsky, E. (2010). Handbook of spent hydroprocessing catalysts regeneration, rejuvenation and reclamation. London: Elsevier.
Mishra, D., Kim, D. J., Ralph, D. E., Ahn, J. G. & Rhee, Y. H. (2007). Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs. Hydrometallurgy, 88, 202–209. DOI:10.1016/j. hydromet.2007.05.007.
Mishra, D., Kim, D. J., Ralph, D. E., Ahn, J. G. & Rhee, Y. H. (2008). Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Journal of Hazardous Materials, 152, 1082–1091. DOI:10.1016/j. jhazmat.2007.07.083.
Mishra, D. & Rhee, Y. H. (2014). Microbial leaching of metals from solid industrial wastes. Journal of Microbiology, 52, 1–7. DOI:10.1007/s12275-014-3532-3.
Motaghed, M., Mousavi, S. M., Rastegar, S. O. & Shojaosadati, S. A. (2014). Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: Statistical modeling and process optimization. Bioresource Technology, 171, 401–409. DOI:10.1016/j.biortech.2014.08.032.
Noori Felegari, Z., Nematdoust Haghi, B., Amoabediny, G., Mousavi, S. M. & Amouei Torkmahalleh, M. (2014). An optimized integrated process for the bioleaching of a spent refinery processing catalysts. International Journal of Environmental Research, 8, 621–634.
Olson, G. J., Brierley, J. A. & Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249–257. DOI:10.1007/s00253-003-1404-6.
Pathak, A., Srichandan, H. & Kim, D. (2015). Feasibility of bioleaching in removing metals (Al, Ni, V and Mo) from as received raw petroleum spent refinery catalyst: A comparative study on leaching yields, risk assessment code and reduced partition index. Materials Transactions, 56, 1278-1286. DOI:10.2320/matertrans.M2015104.
Pathak, A., Srichandan, H. & Kim, D. J. (2019). Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. Journal of Environmental Management, 242, 372-383. DOI:10.1016/j. jenvman.2019.04.081.
Pradhan, D., Mishra, D., Kim, D. J., Chaudhury, G. R., & Lee, S.W. (2009). Dissolution kinetics of spent petroleum catalyst using two different acidophiles. Hydrometallurgy, 99, 157–162. DOI:10.1016/j.hydromet.2009.07.014.
Pradhan, D., Mishra, D., Kim, D. J., Ahn, J. G., Chaudhury, G. R. & Lee, S. W. (2010). Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Journal of Hazardous Materials, 175, 267– 273. DOI:10.1016/j.jhazmat.2009.09.159.
Rawlings, D. E. (2002). Heavy metal mining using microbes. Annual Reviews of Microbiology, 56, 65–91. DOI:10.1146/annurev.micro.56.012302.161052.
Rivas-Castillo, A. M., Orona-Tamayo, D., Gómez-Ramírez, M. & Rojas-Avelizapa, N. G. (2017a). Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst. Biotechnology and Bioprocess Engineering, 22, 296-307. DOI:10.1007/ s12257-016-0019-6.
Rivas-Castillo, A. M., Monges-Rojas, T. L. & Rojas-Avelizapa, N. G. (2017b). Specificity of Mo and V removal from a spent catalyst by Cupriavidus metallidurans CH34. Waste and Biomass Valorization, 10, 1037-1042. DOI:10.1007/ s12649-017-0093-9.
Rivas-Castillo, A. M., Gómez-Ramírez, M., Rodríguez- Pozos, I. & Rojas-Avelizapa, N. G. (2018). Bioleaching of metals contained in spent catalysts by Acidithiobacillus thiooxidans DSM 26636. International Journal of Biotechnology and Bioengineering, 12, 430-434.
Rivas-Castillo, A. M., Guatemala-Cisneros, M., Gómez- Ramírez, M. & Rojas-Avelizapa, N.G. (2019). Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst. Journal of Environmental Science and Health Part A. Toxic/Hazardous Substances and Environmental Engineering, 54, 1-8. DOI:10.1080/1 0934529.2019.1571307.
Rohwerder, T., Gehrke, T., Kinzler, K. & Sand, W. (2003). Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63, 239–248. DOI:10.1007/s00253-003-1448-7.
Rojas-Avelizapa, N. G., Gómez-Ramírez, M. & Alamilla- Martínez, D. G. (2015). Metal removal from spent catalyst using Microbacterium liquefaciens in solid culture. Advanced Materials Research, 1130, 564–567. DOI:10.4028/www.scientific.net/AMR.1130.564.
Rui, Z., Wu, S., Ji, H. & Liu, Z. (2015). Reactivation and Reuse of Platinum-Based Spent Catalysts for Combustion of Exhaust Organic Gases. Chemical Engineering & Technology, 38, 409–415. DOI:10.1002/ ceat.201400467.
Sahu, K. K., Agrawal, A., & Mishra, D. (2013). Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. Journal of Environmental Management, 125, 68–73. DOI:10.1016/j. jenvman.2013.03.032.
Sand, W., Gehrke, T., Jozsa, P. G. & Schippers, A. (2001). (Bio) chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy, 59, 159–175. DOI:10.1016/S0304-386X(00)00180-8.
Sanga, S. & Nishimura, Y. (1976). Sewer waste water treating agent produced from waste cracking catalyst. US patent 3,960,760.
Santhiya, D. & Ting, Y. P. (2005). Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology, 116, 171–184. DOI:10.1016/j.jbiotec.2004.10.011.
Santhiya, D. & Ting, Y. P. (2006). Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology, 121, 62–74. DOI:10.1016/j.jbiotec.2005.07.002.
Sharma, M., Bisht, V., Singh, B., Jain, P., Mandal, A. K., Lal, B. & Sarma, P. M. (2015). Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478. Indian Journal of Experimental Biology, 53, 388-394.
Shim, W. G. & Kim, S. C. (2010). Heterogeneous adsorption and catalytic oxidation of benzene, toluene and xylene over spent and chemically regenerated platinum catalyst supported on activated carbon. Applied Surface Science, 256, 5566–5571. DOI:10.1016/j.apsusc.2009.12.148.
Srichandan, H., Kim, D. J., Gahan, C. S. & Akcil, A. (2013). Microbial extraction metal values from spent catalyst: Mini review. In Thatoi, H.N. (Ed.). Advances in Biotechnology. (pp. 225–239) New Delhi: Indian Publisher.
Srichandan, H., Singh, S., Pathak, A., Kim, D. J., Lee, S.W. & Heyes, G. (2014). Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: Effect of particle size. Journal of Environmental Science and Health Part A. Toxic/Hazardous Substances and Environmental Engineering, 49, 807–818. DOI:10.1 080/10934529.2014.882211.
Stanislaus, A., Gouda, G. R. & Al-Fulaij, S. (1998). Safe disposal and utilization of heavy-metal containing spent catalysts by thermal treatment: Waste management and remediation in oil production, up grading and refining processes. Preprints - American Chemical Society, Division of Petroleum Chemistry, 43, 491–494.
Stanislaus, A., Marafi, A. & Rana, M. S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 153, 1–68. DOI:10.1016/j.cattod.2010.05.011.
Strasser, H., Burgstaller, W. & Schinner, F. (1994). High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiology Letters, 119, 365– 370. DOI:10.1111/j.1574-6968.1994.tb06914.x.
Su, N., Chen, Z. H. & Fang, H.Y. (2001). Reuse of spent catalyst as fine aggregate in cement mortar. Cement and Concrete Composites, 23, 111–118. DOI:10.1016/S0958- 9465(00)00074-3.
Taha, R., Al-Kamyani, Z., Al-Jabri, K., Baawain, M. & Al- Shamsi, K. (2012). Recycling of waste spent catalyst in road construction and masonry blocks. Journal of Hazardous Materials, 229-230, 122–127. DOI:10.1016/j. jhazmat.2012.05.083.
Valix, M. & Loon, L. (2003). Adaptive tolerance behaviour of fungi in heavy metals. Minerals Engineering, 16, 193– 198. DOI:10.1016/S0892-6875(03)00004-9.
Vargas, F., Restrepo, E., Rodríguez, J. E., Vargas, F., Arbeláez, L., Caballero, P., Arias, J., López, E., Latorre, G. & Duarte, G. (2018). Solid-state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings. Ceramics International, 44, 3556-3562. DOI:10.1016/j. ceramint.2017.11.044.
Villegas, L. B., Amoroso, M. J. & de Figueroa, L. I. C. (2005). Copper tolerant yeasts isolated from polluted area of Argentina. Journal of Basic Microbiology, 45, 381–391. DOI:10.1002/jobm.200510569.
Warhurst, A. (1985). Biotechnology for mining: The potential of an emerging technology, the Andean Pact Copper Project and some policy implications. Development and Change, 16, 93–121. DOI:10.1111/j.1467-7660.1985. tb00203.x.
Xu, T., Ramanathan, T. & Ting, Y. (2014). Bioleaching of incineration fly ash by Aspergillus niger - Precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnology Reports, 3, 8-14.
Yang, Q. Z., Qi, G. J., Low, H. C. & Song, B. (2011). Sustainable recovery of nickel from spent hydrogenation catalyst: economics, emissions and wastes assessment. Journal of Cleaner Production, 19, 365-375. DOI:10.1016/j.jclepro.2010.11.007.
Yoo, J. S. (1998). Metal recovery and rejuvenation of metalloaded spent catalysts. Catalysis Today, 44, 27–46. DOI:10.1016/S0920-5861(98)00171-0.
Zeiringer, H. (1979). Preparation of abrasive material from spent catalysts. US patent 4,142,871