2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos EM, Lopez-Badillo CM
Idioma: Español
Referencias bibliográficas: 94
Paginas: 1-12
Archivo PDF: 688.89 Kb.
RESUMEN
Los hidrogeles basados en colágeno son redes tridimensionales (3D) con la capacidad de absorber agua y una alta
biocompatibilidad para utilizarlos en la reparación de tejidos dañados. Estos materiales presentan pobres propiedades
mecánicas y velocidades de degradación rápidas, limitando su aplicación a estrategias de ingeniería tisular y biomedicina;
por ésto, la incorporación de fases inorgánicas en la matriz 3D del colágeno como la hidroxiapatita ha contribuido en
la mejora de sus propiedades, incrementado la eficiencia de los hidrogeles híbridos obtenidos. Este trabajo, presenta
las contribuciones más relevantes relacionadas con los sistemas de hidrogeles basados en colágeno y partículas de
hidroxiapatita dispersas dentro de la matriz colagénica, lo que evidencia que la combinación de los materiales no altera
la biocompatibilidad y biodegradabilidad típicas del colágeno, permitiendo la adhesión, proliferación, crecimiento
celular y control del metabolismo de las células implicadas en los procesos de una reparación ósea, presentando a los
hidrogeles como una estrategia para su uso potencial en la ingeniería tisular.
REFERENCIAS (EN ESTE ARTÍCULO)
Abou Neel, E. A., Cheema, U., Knowles, J. C., Brown, R. A. & Nazhat, S. N. (2006). Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter, 2(11), 986-992. DOI:10.1039/b609784g.
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. DOI: 10.1016/j.jare.2013.07.006.
Al-Munajjed, A. A., Plunkett, N. A., Gleeson, J. P., Weber, T., Jungreuthmayer, C., Levingstone, T., Hammer, J. & O’Brien, F. J. (2009). Development of a biomimetic collagenhydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B(2), 584-591. DOI: 10.1002/jbm.b.31320.
Ambekar, R. S. & Kandasubramanian, B. (2019). Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Industrial & Engineering Chemistry Research, 58(16), 6163-6194. DOI: 10.1021/ acs.iecr.8b05334.
Amini, A. R., Laurencin, C. T. & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges. Critical Reviews in Biomedical Engineering, 40(5), 363-408.
Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. (1996). Mechanical properties of hydrogels and their experimental determination. Biomaterials, 17(17), 1647-1657. DOI: 10.1016/0142-9612(96)87644-7.
Bahram, M., Mohseni, N., Moghtader, M. (2016). An introduction to hydrogels and some recent applications. Sutapa Biswas Majee, Intech Open (Ed.), Emerging Concepts in Analysis and Applications of Hydrogels, (pp. 9-22). DOI: 10.5772/64301.
Bai, X., Gao, M., Syed, S., Zhuang, J., Xu, X. & Zhang, X.- Q. (2018). Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4), 401-417. DOI: 10.1016/j. bioactmat.2018.05.006.
Bendtsen, S. T. & Wei, M. (2015). Synthesis and characterization of a novel injectable alginate collagen hydroxyapatite hydrogel for bone tissue regeneration. Journal of Materials Chemistry B, 3(15), 3081-3090. DOI: 10.1039/c5tb00072f.
Bharti, A., Singh, S., Meena, V. K. & Goyal, N. (2016). Structural Characterization of Silver-Hydroxyapatite Nanocomposite: A Bone Repair Biomaterial. Materials Today:Proceedings, 3(6), 2113-2120. DOI: 10.1016/j.matpr.2016.04.116.
Carlson, G. A., Dragoo, J. L., Samimi, B., Bruckner, D. A., Bernard, G. W., Hedrick, M. & Benhaim, P. (2004). Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochemical and Biophysical Research Communications, 321(2), 472-478. DOI: 10.1016/j.bbrc.2004.06.165.
Cen, L., Liu, W., Cui, L., Zhang, W. & Cao, Y. (2008). Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatric Research, 63(5), 492-496. DOI: 10.1203/PDR.0b013e31816c5bc3.
Claudio-Rizo, J. A., Rangel-Argote, M., Castellano, L. E., Delgado, J., Mata-Mata, J. L. & Mendoza-Novelo, B. (2017). Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science and Engineering: C, 79, 793-801. DOI: 10.1016/j.msec.2017.05.118.
Cosgriff-Hernandez, E. & Mikos, A. G. (2008). New Biomaterials as Scaffolds for Tissue Engineering. Pharmaceutical Research, 25(10), 2345-2347. DOI: 10.1007/s11095-008- 9666-4.
Chai, Q., Jiao, Y. & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels (Basel, Switzerland), 3(1), 6. DOI: 10.3390/gels3010006.
Chen, L., Hu, J., Ran, J., Shen, X. & Tong, H. (2014). Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 65, 1-7.DOI: 10.1016/j.ijbiomac.2014.01.003
Chen, L., Hu, J., Ran, J., Shen, X. & Tong, H. (2016). Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Polymer Composites, 37(1), 81-90. DOI: 10.1002/pc.23157.
Chen, M. H., Wang, L. L., Chung, J. J., Kim, Y.-H., Atluri, P. & Burdick, J. A. (2017). Methods to Assess Shear-Thinning Hydrogels for Application as Injectable Biomaterials. ACS Biomaterials Science & Engineering, 3(12), 3146-3160. DOI: 10.1021/acsbiomaterials.7b00734.
De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A. & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials, 5(4), 197-211. DOI: 10.1093/rb/rby013.
Dimitriou, R., Jones, E., McGonagle, D. & Giannoudis, P. V. (2011). Bone regeneration: current concepts and future directions. BMC Medicine, 9(1), 66. DOI: 10.1186/1741- 7015-9-66.
Drury, J. L. & Mooney, D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24), 4337-4351. DOI: 10.1016/s0142- 9612(03)00340-5.
Fillingham, Y. & Jacobs, J. (2016). Bone grafts and their substitutes. The Bone & Joint Journal, 98-B, 6-9. DOI: 10.1302/0301-620x.98b.36350.
Froelich, K., Pueschel, R. C., Birner, M., Kindermann, J., Hackenberg, S., Kleinsasser, N. H., Hagen, R. & Staudenmaier, R. (2010). Optimization of Fibrinogen Isolation for Manufacturing Autologous Fibrin Glue for Use as Scaffold in Tissue Engineering. Artificial Cells, Blood Substitutes, and Biotechnology, 38(3), 143-149. DOI: 10.3109/10731191003680748.
Gallo, N., Nasser, H., Salvatore, L., Natali, M. L., Campa, L., Mahmoud, M., Capobianco, L., Sannino, A. & Madaghiele, M. (2019). Hyaluronic acid for advanced therapies: Promises and challenges. European Polymer Journal, 117, 134-147. DOI: 10.1016/j.eurpolymj.2019.05.007.
Gardin, C., Ferroni, L., Favero, L., Stellini, E., Stomaci, D., Sivolella, S., Bressan, E. & Zavan, B. (2012). Nanostructured biomaterials for tissue engineered bone tissue reconstruction. International Journal of Molecular Sciences, 13(1), 737-757. DOI: 10.3390/ijms13010737.
Gea, S., Surga, M., Rahayu, S., Marpongahtun, Hutapea, Y. A. & Piliang, A. F. (2018). The analysis of thermal and mechanical properties of biocomposite policaprolactone/ cellulose nanofiber from oil palm empty fruit bunches. AIP Conference Proceedings, 2049(1), 020063. DOI: 10.1063/1.5082468.
George, A., Shah, P. A. & Shrivastav, P. S. (2019). Natural biodegradable polymers-basednano-formulations for drug delivery: A review. International Journal of Pharmaceutics, 561, 244-264. DOI: 10.1016/j.ijpharm.2019.03.011.
Giannoudis, P. V., Dinopoulos, H. & Tsiridis, E. (2005). Bone substitutes: An update. Injury, 36(3), S20-S27. DOI: 10.1016/j.injury.2005.07.029.
Hayrapetyan, A., Bongio, M., Leeuwenburgh, S. C., Jansen, J.A. & Van Den Beucken, J. J. (2016). Effect of Nano-HA/ Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 12(3), 352-364. DOI: 10.1007/s12015-016- 9644-x.
Huang, G. & Chen, J. (2019). Preparation and applications of hyaluronic acid and its derivatives. International Journal of Biological Macromolecules, 125, 478-484.DOI: 10.1016/j. ijbiomac.2018.12.074.
Huang, Z., Feng, Q., Yu, B. & Li, S. (2011a). Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/ collagen composite. Materials Science and Engineering: C, 31(3), 683-687. DOI: 10.1016/j.msec.2010.12.014.
Huang, Z., Yu, B., Feng, Q., Li, S., Chen, Y. & Luo, L. (2011b). In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydrate Polymers, 85(1), 261-267. DOI:10.1016/j. carbpol.2011.02.029.
Hutmacher, D. W., Schantz, J. T., Lam, C. X., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffoldbased bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1(4), 245-260. DOI: 10.1002/term.24.
Imre, B. & Pukánszky, B. (2013). Compatibilization in biobased and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. DOI: 10.1016/j. eurpolymj.2013.01.019.
Jansen, K. A., Licup, A. J., Sharma, A., Rens, R., MacKintosh, F. C. & Koenderink, G. H. (2018). The Role of Network Architecture in Collagen Mechanics. Biophysical Journal, 114(11), 2665-2678. DOI: 10.1016/j.bpj.2018.04.043.
Joon, B. P. (1984). Biomaterials science and engineering. Springer, Boston, MA. ISBN 978-1-4612-9710-9. DOI: 10.1007/978-1-4613-2769-1_1.
Kaczmarek, B., Sionkowska, A., Gołyńska, M., Polkowska, I., Szponder, T., Nehrbass, D. & Osyczka, A. M. (2018). In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. International Journal of Biological Macromolecules, 118, 938-944. DOI: 10.1016/j.ijbiomac.2018.06.175.
Kalita, S. J., Bhardwaj, A. & Bhatt, H. A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering: C, 27(3), 441-449. DOI: 10.1016/j.msec.2006.05.018.
Kaviani, A., Zebarjad, S. M., Javadpour, S., Ayatollahi, M. & Bazargan-Lari, R. (2019). Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. International Journal of Polymer Analysis and Characterization, 24(3), 191-203. DOI: 10.1080/1023666x.2018.1562477.
Khan, F. & Ahmad, S. R. (2013). Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application. Macromolecular Bioscience, 13(4), 395-421. DOI: 10.1002/ mabi.201200409.
Kuriakose, T. A., Kalkura, S. N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G. & Betzel, C. (2004). Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanolbased sol–gel technique at low temperature. Journal of Crystal Growth, 263(1), 517-523. DOI:10.1016/j. jcrysgro.2003.11.057.
Labet, M. & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484-3504. DOI: 10.1039/b820162p.
Lammi, M. J., Piltti, J., Prittinen, J. & Qu, C. (2018). Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. International Journal of Molecular Sciences, 19(9), 2700. DOI: 10.3390/ijms19092700.
Laurencin, C. T., Ambrosio, A. M. A., Borden, M. D. & Cooper, J. A. (1999). Tissue Engineering: Orthopedic Applications. Annual Review of Biomedical Engineering, 1(1), 19-46. DOI: 10.1146/annurev.bioeng.1.1.19.
Laydi, F., Rahouadj, R., Cauchois, G., Stolz, J. F. & De Isla, N. (2013). Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture. Bio-Medical Materiales and Engineering, 23, 311-315.DOI: 10.3233/BME-130755.
Lee, B., Jo, S., Kim, S., Cho, M., Park, S., Youn, J., Ji, J. D. & Kim, T. (2018). Poly-γ-glutamic acid suppresses osteoclastogenesis in human osteoclast precursors and prevents joint damage in a collagen-induced murine arthritis model. Immunology Letters, 203, 80-86. DOI: 10.1016/j. imlet.2018.09.004.
Li, Z., Su, Y., Xie, B., Wang, H., Wen, T., He, C., Shen, H., Wu, D. & Wang, D. (2013). A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. Journal of Materials Chemistry B, 1(12), 1755- 1764. DOI: 10.1039/c3tb00246b.
Lickorish, D., Ramshaw, J. A. M., Werkmeister, J. A., Glattauer, V. & Howlett, C. R. (2004). Collagen–hydroxyapatite composite prepared by biomimetic process. Journal of Biomedical Materials Research Part A, 68A(1), 19-27. DOI: 10.1002/jbm.a.20031.
Lin, K. & Chang, J. (2015). 1 - Structure and properties of hydroxyapatite for biomedical applications. In M. Mucalo (Ed.), Hydroxyapatite (HAp) for Biomedical Applications, (pp. 3-19). Woodhead Publishing.
Ma, X., He, Z., Han, F., Zhong, Z., Chen, L. & Li, B. (2016). Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 143, 81-87. DOI: 10.1016/j.colsurfb.2016.03.025.
Martin-Piedra, A. & Martin-Piedra, L. (2019). Matrices para ingeniería del tejido óseo. Actualidad Médica, 104(806), 36-45. DOI:10.15568/am.2019.806.re01.
Murugan, R. & Ramakrishna, S. (2005). Development of nanocomposites for bone grafting. Composites Science and Technology, 65(15), 2385-2406.DOI: 10.1016/j. compscitech.2005.07.022.
Nasiri-Tabrizi, B., Fahami, A. & Ebrahimi-Kahrizsangi, R. (2013). Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceramics International, 39(5), 5751-5763. DOI: 10.1016/j.ceramint.2012.12.093.
O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88-95. DOI: 10.1016/ S1369-7021(11)70058-X.
Oftadeh, R., Perez-Viloria, M., Villa-Camacho, J. C., Vaziri, A. & Nazarian, A. (2015). Biomechanics and mechanobiology of trabecular bone: a review. Journal of Biomechanical Engineering, 137(1), 0108021-01080215. DOI: 10.1115/1.4029176.
Orive, G., Hernández, R. M., Garcón, A., Igartúa, M. & Pedráz M., J. L. (2003). Ingeniería Tisular: Retos y Realidades. Vitae, 10(2), 46-51. https://www.redalyc.org/articulo. oa?id=169817981005.
Parenteau-Bareil, R., Gauvin, R. & Berthod, F. (2010). Collagen- Based Biomaterials for Tissue Engineering Applications. Materials, 3(3), 1863-1887. DOI: 10.3390/ma3031863.
Parikh, S. (2002). Bone graft substitutes: past, present, future. Journal of Postgraduate Medicine, 48(2), 142-148.http:// www.jpgmonline.com/text.asp?2002/48/2/142/123.
Peng, F., Yu, X. & Wei, M. (2011). In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomaterialia, 7(6), 2585-2592. DOI: 10.1016/j.actbio.2011.02.021.
Porter, J. R., Ruckh, T. T. & Popat, K. C. (2009). Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 25(6), 1539- 1560. DOI: 10.1002/btpr.246.
Ramli, R. A., Adnan, R., Bakar, M. A & Masudi, S. M. (2011). Synthesis and characterization of pure nanoporous hydroxyapatite. Journal of Physical Science, 22(1), 25-37.
Rao, R. R., Ceccarelli, J., Vigen, M. L., Gudur, M., Singh, R., Deng, C. X., Putnam, A. J. & Stegemann, J. P. (2014). Effects of hydroxyapatite on endothelial network formation in collagen/fibrin composite hydrogels in vitro and in vivo. Acta Biomaterialia, 10(7), 3091-3097. DOI: 10.1016/j. actbio.2014.03.010.
Rincón, M., Rodríguez, A., Londoño, M. E. & Echavarría, A. (2007). Fabricación y caracterización de una matriz tridimensional de hidroxiapatita macroporosa para aplicación en ingeniería de tejidos óseos. Revista EIA, 87-95. http://www.scielo.org.co/scielo.php?script=sci_ar ttext&pid=S179412372007000100008&lng=en&tlng=es.
Roberts, T. T. & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics. Organogenesis, 8(4), 114- 124. DOI: 10.4161/org.23306.
Sachlos, E., Reis, N., Ainsley, C., Derby, B. & Czernuszka, J. T. (2003). Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials, 24(8), 1487-1497.DOI: 10.1016/S0142- 9612(02)00528-8.
Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9(8), 7591-7621. DOI: 10.1016/j.actbio.2013.04.012.
Salgado, A. J., Coutinho, O. P. & Reis, R. L. (2004). Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 4(8), 743-765. DOI: 10.1002/ mabi.200400026.
Sequeda, L. G., Díaz, J. M., Gutiérrez, S. J., Perdomo, S. J. & Gómez, O. L. (2012). Obtención de hidroxiapatita sintética por tres métodos diferentes y su caracterización para ser utilizada como sustituto óseo. Revista Colombiana de Ciencias Químico-Farmacéuticas, 41(1), 50-66.
Shen, X., Chen, L., Cai, X., Tong, T., Tong, H. & Hu, J. (2011). A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. Journal of Materials Science: Materialsin Medicine, 22(2), 299-305. DOI: 10.1007/s10856-010-4199-x.
Sherman, V. R., Yang, W. & Meyers, M. A. (2015). The materials science of collagen. Journal of the Mechanical Behavior of Biomedical Materials, 52, 22-50. DOI: 10.1016/j. jmbbm.2015.05.023.
Shi, L., Yang, N., Zhang, H., Chen, L., Tao, L., Wei, Y., Liu, H. & Luo, Y. (2015). A novel poly(γ-glutamic acid)/ silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Materials Science and Engineering: C, 48, 533-540. DOI: 10.1016/j. msec.2014.12.047.
Shuk, P., Suchanek, W. L., Hao, T., Gulliver, E., Riman, R. E., Senna, M., TenHuisen, K. S. & Janas, V. F. (2001). Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature. Journal of Materials Research, 16(5), 1231-1234. DOI: 10.1557/ jmr.2001.0170.
Silva, C. C., Pinheiro, A. G., Miranda, M. A. R., Góes, J. C. & Sombra, A. S. B. (2003). Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sciences, 5(4), 553-558. DOI: 10.1016/S1293- 2558(03)00035-9.
Sommerfeldt, D. & Rubin, C. (2001). Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal, 10(2), S86-S95. DOI: 10.1007/ s005860100283.
Stock, S. R. (2015). The Mineral-Collagen Interface in Bone. Calcified Tissue International, 97(3), 262-280. DOI: 10.1007/s00223-015-9984-6.
Suchanek, W. & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13(1), 94-117. DOI: 10.1557/jmr.1998.0015.
Szcześ, A., Hołysz, L. & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249, 321-330. DOI: 10.1016/j.cis.2017.04.007.
Takallu, S., Mirzaei, E., Azadi, A., Karimizade, A. & Tavakol, S. (2019). Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37 °C. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(6), 1920-1929. DOI: 10.1002/jbm.b.34284.
Tan, H. & Marra, K. G. (2010). Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials, 3(3), 1746-1767. DOI: 10.3390/ma3031746.
Tolaimate, A., Desbrieres, J., Rhazi, M. & Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer, 44(26), 7939-7952.DOI: 10.1016/j.polymer.2003.10.025.
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B. & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278- 314. DOI: 10.1016/j.bioactmat.2017.10.001.
Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13(1), 174-185. DOI: 10.1016/j.crci.2009.03.004.
Wahl D. A. & Czernuszka, J. (2006). Collagen-hydroxyapatite composites for hard tissue repair. European Cells and Materials, 11, 43-56. DOI: 10.22203/eCM.v011a06.
Wang, W. & Yeung, K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224-247. DOI: 10.1016/j. bioactmat.2017.05.007.
Wang, X., Wang, X., Tan, Y., Zhang, B., Gu, Z. & Li, X. (2009). Synthesis and evaluation of collagen–chitosan– hydroxyapatite nanocomposites for bone grafting. Journal of Biomedical Materials Research Part A, 89A(4), 1079- 1087. DOI: 10.1002/jbm.a.32087.
Wang, Y., Von Euw, S., Fernandes, F. M., Cassaignon, S., Selmane, M., Laurent, G., Pehau-Arnaudet, G., Coelho, C., Bonhomme-Coury, L., Giraud-Guille, M.-M., Babonneau, F., Azaïs, T. & Nassif, N. (2013). Water-mediated structuring of bone apatite. Nature Materials, 12, 1144. DOI: 10.1038/ nmat3787.
Xu, J., Tan, X., Chen, L., Li, X. & Xie, F. (2019). Starch/ microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohydrate Polymers, 215, 151- 159. DOI: 10.1016/j.carbpol.2019.03.078.
Yahia, S., Khalil, I. A. & El-Sherbiny, I. M. (2019). Sandwich- Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Applied Materials & Interfaces, 11(32), 28610-28620. DOI: 10.1021/acsami.9b06359.
Zhang, D., Wu, X., Chen, J. & Lin, K. (2018). The development of collagen based composite scaffolds for bone regeneration. Bioactive Materials, 3(1), 129-138. DOI: 10.1016/j. bioactmat.2017.08.004
Zhang, L.J., Feng, X.S., Liu, H.G., Qian, D.J., Zhang, L., Yu, X.L. & Cui, F.Z. (2004). Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Materials Letters, 58(5), 719-722. DOI: 10.1016/j.matlet.2003.07.009.
Zhao, H., Ma, L., Gao, C. & Shen, J. (2008). Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polymers for Advanced Technologies, 19(11), 1590-1596. DOI:10.1002/pat.1174.
Zheng, L., Jiang, X., Chen, X., Fan, H. & Zhang, X. (2014). Evaluation of novelinsitusynthesizednano-hydroxyapatite/ collagen/alginate hydrogels for osteochondral tissue engineering. Biomedical Materials, 9(6), 065004. DOI: 10.1088/1748-6041/9/6/065004.
Zhou, H. & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), 2769- 2781. DOI: 10.1016/j.actbio.2011.03.019.
Zivanovic, S., Davis, R. H. & Golden, D. A. (2015). 8 - Chitosan as an antimicrobial in food products. In T. M. Taylor (Ed.), Handbook of Natural Antimicrobials for Food Safety and Quality (pp. 153-181). Oxford: Woodhead Publishing.